MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirprm Structured version   Visualization version   GIF version

Theorem lgsdirprm 27242
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))

Proof of Theorem lgsdirprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐴 ∈ ℤ)
2 simpl2 1193 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐵 ∈ ℤ)
3 lgsdir2 27241 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
41, 2, 3syl2anc 584 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
5 simpr 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝑃 = 2)
65oveq2d 7403 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 · 𝐵) /L 2))
75oveq2d 7403 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐴 /L 𝑃) = (𝐴 /L 2))
85oveq2d 7403 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐵 /L 𝑃) = (𝐵 /L 2))
97, 8oveq12d 7405 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) = ((𝐴 /L 2) · (𝐵 /L 2)))
104, 6, 93eqtr4d 2774 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℤ)
12 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℤ)
1311, 12zmulcld 12644 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 · 𝐵) ∈ ℤ)
14 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℙ)
15 prmz 16645 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1614, 15syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℤ)
17 lgscl 27222 . . . . 5 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1813, 16, 17syl2anc 584 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1918zcnd 12639 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℂ)
20 lgscl 27222 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
2111, 16, 20syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℤ)
22 lgscl 27222 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ ℤ)
2312, 16, 22syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℤ)
2421, 23zmulcld 12644 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ)
2524zcnd 12639 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℂ)
2619, 25subcld 11533 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℂ)
2726abscld 15405 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
28 prmnn 16644 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2914, 28syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℕ)
3029nnrpd 12993 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ+)
3126absge0d 15413 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
32 2re 12260 . . . . . . . 8 2 ∈ ℝ
3332a1i 11 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ∈ ℝ)
3429nnred 12201 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ)
3519abscld 15405 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ∈ ℝ)
3625abscld 15405 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℝ)
3735, 36readdcld 11203 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
3819, 25abs2dif2d 15427 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
39 1red 11175 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 1 ∈ ℝ)
40 lgsle1 27223 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
4113, 16, 40syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
42 eqid 2729 . . . . . . . . . . . . . 14 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4342lgscl2 27220 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4411, 16, 43syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4542lgscl2 27220 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4612, 16, 45syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4742lgslem3 27210 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ∧ (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4844, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
49 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → (abs‘𝑥) = (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
5049breq1d 5117 . . . . . . . . . . . . 13 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → ((abs‘𝑥) ≤ 1 ↔ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5150elrab 3659 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ ∧ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5251simprbi 496 . . . . . . . . . . 11 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5348, 52syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5435, 36, 39, 39, 41, 53le2addd 11797 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ (1 + 1))
55 df-2 12249 . . . . . . . . 9 2 = (1 + 1)
5654, 55breqtrrdi 5149 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
5727, 37, 33, 38, 56letrd 11331 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
58 prmuz2 16666 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
59 eluzle 12806 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
6014, 58, 593syl 18 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ≤ 𝑃)
61 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
62 ltlen 11275 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6332, 34, 62sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6460, 61, 63mpbir2and 713 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 < 𝑃)
6527, 33, 34, 57, 64lelttrd 11332 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)
66 modid 13858 . . . . . 6 ((((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∧ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6727, 30, 31, 65, 66syl22anc 838 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6811zcnd 12639 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℂ)
6912zcnd 12639 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℂ)
70 eldifsn 4750 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7114, 61, 70sylanbrc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℙ ∖ {2}))
72 oddprm 16781 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
7371, 72syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ)
7473nnnn0d 12503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
7568, 69, 74mulexpd 14126 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))))
76 zexpcl 14041 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7711, 74, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7877zcnd 12639 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
79 zexpcl 14041 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8012, 74, 79syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8180zcnd 12639 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℂ)
8278, 81mulcomd 11195 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8375, 82eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8483oveq1d 7402 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
85 lgsvalmod 27227 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8613, 71, 85syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8721zred 12638 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℝ)
8877zred 12638 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
89 lgsvalmod 27227 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
9011, 71, 89syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
91 modmul1 13889 . . . . . . . . . . 11 ((((𝐴 /L 𝑃) ∈ ℝ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐵 /L 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9287, 88, 23, 30, 90, 91syl221anc 1383 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9323zcnd 12639 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℂ)
9478, 93mulcomd 11195 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) = ((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))))
9594oveq1d 7402 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
9623zred 12638 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℝ)
9780zred 12638 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ)
98 lgsvalmod 27227 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
9912, 71, 98syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
100 modmul1 13889 . . . . . . . . . . 11 ((((𝐵 /L 𝑃) ∈ ℝ ∧ (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10196, 97, 77, 30, 99, 100syl221anc 1383 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10292, 95, 1013eqtrd 2768 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10384, 86, 1023eqtr4d 2774 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃))
104 moddvds 16233 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ ∧ ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
10529, 18, 24, 104syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
106103, 105mpbid 232 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
10718, 24zsubcld 12643 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ)
108 dvdsabsb 16245 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
10916, 107, 108syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
110106, 109mpbid 232 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
111 dvdsmod0 16228 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11229, 110, 111syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11367, 112eqtr3d 2766 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) = 0)
11426, 113abs00d 15415 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) = 0)
11519, 25, 114subeq0d 11541 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11610, 115pm2.61dane 3012 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cdif 3911  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951   mod cmo 13831  cexp 14026  abscabs 15200  cdvds 16222  cprime 16641   /L clgs 27205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-pc 16808  df-lgs 27206
This theorem is referenced by:  lgsdir  27243
  Copyright terms: Public domain W3C validator