MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirprm Structured version   Visualization version   GIF version

Theorem lgsdirprm 27390
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))

Proof of Theorem lgsdirprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐴 ∈ ℤ)
2 simpl2 1191 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐵 ∈ ℤ)
3 lgsdir2 27389 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
41, 2, 3syl2anc 584 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
5 simpr 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝑃 = 2)
65oveq2d 7447 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 · 𝐵) /L 2))
75oveq2d 7447 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐴 /L 𝑃) = (𝐴 /L 2))
85oveq2d 7447 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐵 /L 𝑃) = (𝐵 /L 2))
97, 8oveq12d 7449 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) = ((𝐴 /L 2) · (𝐵 /L 2)))
104, 6, 93eqtr4d 2785 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℤ)
12 simpl2 1191 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℤ)
1311, 12zmulcld 12726 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 · 𝐵) ∈ ℤ)
14 simpl3 1192 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℙ)
15 prmz 16709 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1614, 15syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℤ)
17 lgscl 27370 . . . . 5 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1813, 16, 17syl2anc 584 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1918zcnd 12721 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℂ)
20 lgscl 27370 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
2111, 16, 20syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℤ)
22 lgscl 27370 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ ℤ)
2312, 16, 22syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℤ)
2421, 23zmulcld 12726 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ)
2524zcnd 12721 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℂ)
2619, 25subcld 11618 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℂ)
2726abscld 15472 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
28 prmnn 16708 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2914, 28syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℕ)
3029nnrpd 13073 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ+)
3126absge0d 15480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
32 2re 12338 . . . . . . . 8 2 ∈ ℝ
3332a1i 11 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ∈ ℝ)
3429nnred 12279 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ)
3519abscld 15472 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ∈ ℝ)
3625abscld 15472 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℝ)
3735, 36readdcld 11288 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
3819, 25abs2dif2d 15494 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
39 1red 11260 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 1 ∈ ℝ)
40 lgsle1 27371 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
4113, 16, 40syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
42 eqid 2735 . . . . . . . . . . . . . 14 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4342lgscl2 27368 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4411, 16, 43syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4542lgscl2 27368 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4612, 16, 45syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4742lgslem3 27358 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ∧ (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4844, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
49 fveq2 6907 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → (abs‘𝑥) = (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
5049breq1d 5158 . . . . . . . . . . . . 13 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → ((abs‘𝑥) ≤ 1 ↔ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5150elrab 3695 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ ∧ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5251simprbi 496 . . . . . . . . . . 11 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5348, 52syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5435, 36, 39, 39, 41, 53le2addd 11880 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ (1 + 1))
55 df-2 12327 . . . . . . . . 9 2 = (1 + 1)
5654, 55breqtrrdi 5190 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
5727, 37, 33, 38, 56letrd 11416 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
58 prmuz2 16730 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
59 eluzle 12889 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
6014, 58, 593syl 18 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ≤ 𝑃)
61 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
62 ltlen 11360 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6332, 34, 62sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6460, 61, 63mpbir2and 713 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 < 𝑃)
6527, 33, 34, 57, 64lelttrd 11417 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)
66 modid 13933 . . . . . 6 ((((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∧ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6727, 30, 31, 65, 66syl22anc 839 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6811zcnd 12721 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℂ)
6912zcnd 12721 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℂ)
70 eldifsn 4791 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7114, 61, 70sylanbrc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℙ ∖ {2}))
72 oddprm 16844 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
7371, 72syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ)
7473nnnn0d 12585 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
7568, 69, 74mulexpd 14198 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))))
76 zexpcl 14114 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7711, 74, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7877zcnd 12721 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
79 zexpcl 14114 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8012, 74, 79syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8180zcnd 12721 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℂ)
8278, 81mulcomd 11280 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8375, 82eqtrd 2775 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8483oveq1d 7446 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
85 lgsvalmod 27375 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8613, 71, 85syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8721zred 12720 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℝ)
8877zred 12720 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
89 lgsvalmod 27375 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
9011, 71, 89syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
91 modmul1 13962 . . . . . . . . . . 11 ((((𝐴 /L 𝑃) ∈ ℝ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐵 /L 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9287, 88, 23, 30, 90, 91syl221anc 1380 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9323zcnd 12721 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℂ)
9478, 93mulcomd 11280 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) = ((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))))
9594oveq1d 7446 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
9623zred 12720 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℝ)
9780zred 12720 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ)
98 lgsvalmod 27375 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
9912, 71, 98syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
100 modmul1 13962 . . . . . . . . . . 11 ((((𝐵 /L 𝑃) ∈ ℝ ∧ (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10196, 97, 77, 30, 99, 100syl221anc 1380 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10292, 95, 1013eqtrd 2779 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10384, 86, 1023eqtr4d 2785 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃))
104 moddvds 16298 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ ∧ ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
10529, 18, 24, 104syl3anc 1370 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
106103, 105mpbid 232 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
10718, 24zsubcld 12725 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ)
108 dvdsabsb 16310 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
10916, 107, 108syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
110106, 109mpbid 232 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
111 dvdsmod0 16293 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11229, 110, 111syl2anc 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11367, 112eqtr3d 2777 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) = 0)
11426, 113abs00d 15482 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) = 0)
11519, 25, 114subeq0d 11626 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11610, 115pm2.61dane 3027 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cdif 3960  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032   mod cmo 13906  cexp 14099  abscabs 15270  cdvds 16287  cprime 16705   /L clgs 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-pc 16871  df-lgs 27354
This theorem is referenced by:  lgsdir  27391
  Copyright terms: Public domain W3C validator