MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirprm Structured version   Visualization version   GIF version

Theorem lgsdirprm 25915
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))

Proof of Theorem lgsdirprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐴 ∈ ℤ)
2 simpl2 1189 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐵 ∈ ℤ)
3 lgsdir2 25914 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
41, 2, 3syl2anc 587 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
5 simpr 488 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝑃 = 2)
65oveq2d 7151 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 · 𝐵) /L 2))
75oveq2d 7151 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐴 /L 𝑃) = (𝐴 /L 2))
85oveq2d 7151 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐵 /L 𝑃) = (𝐵 /L 2))
97, 8oveq12d 7153 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) = ((𝐴 /L 2) · (𝐵 /L 2)))
104, 6, 93eqtr4d 2843 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11 simpl1 1188 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℤ)
12 simpl2 1189 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℤ)
1311, 12zmulcld 12081 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 · 𝐵) ∈ ℤ)
14 simpl3 1190 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℙ)
15 prmz 16009 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1614, 15syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℤ)
17 lgscl 25895 . . . . 5 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1813, 16, 17syl2anc 587 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1918zcnd 12076 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℂ)
20 lgscl 25895 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
2111, 16, 20syl2anc 587 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℤ)
22 lgscl 25895 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ ℤ)
2312, 16, 22syl2anc 587 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℤ)
2421, 23zmulcld 12081 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ)
2524zcnd 12076 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℂ)
2619, 25subcld 10986 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℂ)
2726abscld 14788 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
28 prmnn 16008 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2914, 28syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℕ)
3029nnrpd 12417 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ+)
3126absge0d 14796 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
32 2re 11699 . . . . . . . 8 2 ∈ ℝ
3332a1i 11 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ∈ ℝ)
3429nnred 11640 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ)
3519abscld 14788 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ∈ ℝ)
3625abscld 14788 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℝ)
3735, 36readdcld 10659 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
3819, 25abs2dif2d 14810 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
39 1red 10631 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 1 ∈ ℝ)
40 lgsle1 25896 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
4113, 16, 40syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
42 eqid 2798 . . . . . . . . . . . . . 14 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4342lgscl2 25893 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4411, 16, 43syl2anc 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4542lgscl2 25893 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4612, 16, 45syl2anc 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4742lgslem3 25883 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ∧ (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4844, 46, 47syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
49 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → (abs‘𝑥) = (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
5049breq1d 5040 . . . . . . . . . . . . 13 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → ((abs‘𝑥) ≤ 1 ↔ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5150elrab 3628 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ ∧ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5251simprbi 500 . . . . . . . . . . 11 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5348, 52syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5435, 36, 39, 39, 41, 53le2addd 11248 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ (1 + 1))
55 df-2 11688 . . . . . . . . 9 2 = (1 + 1)
5654, 55breqtrrdi 5072 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
5727, 37, 33, 38, 56letrd 10786 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
58 prmuz2 16030 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
59 eluzle 12244 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
6014, 58, 593syl 18 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ≤ 𝑃)
61 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
62 ltlen 10730 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6332, 34, 62sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6460, 61, 63mpbir2and 712 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 < 𝑃)
6527, 33, 34, 57, 64lelttrd 10787 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)
66 modid 13259 . . . . . 6 ((((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∧ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6727, 30, 31, 65, 66syl22anc 837 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
6811zcnd 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℂ)
6912zcnd 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℂ)
70 eldifsn 4680 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7114, 61, 70sylanbrc 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℙ ∖ {2}))
72 oddprm 16137 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
7371, 72syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ)
7473nnnn0d 11943 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
7568, 69, 74mulexpd 13521 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))))
76 zexpcl 13440 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7711, 74, 76syl2anc 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
7877zcnd 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
79 zexpcl 13440 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8012, 74, 79syl2anc 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8180zcnd 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℂ)
8278, 81mulcomd 10651 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8375, 82eqtrd 2833 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8483oveq1d 7150 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
85 lgsvalmod 25900 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8613, 71, 85syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
8721zred 12075 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℝ)
8877zred 12075 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
89 lgsvalmod 25900 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
9011, 71, 89syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
91 modmul1 13287 . . . . . . . . . . 11 ((((𝐴 /L 𝑃) ∈ ℝ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐵 /L 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9287, 88, 23, 30, 90, 91syl221anc 1378 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
9323zcnd 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℂ)
9478, 93mulcomd 10651 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) = ((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))))
9594oveq1d 7150 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
9623zred 12075 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℝ)
9780zred 12075 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ)
98 lgsvalmod 25900 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
9912, 71, 98syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
100 modmul1 13287 . . . . . . . . . . 11 ((((𝐵 /L 𝑃) ∈ ℝ ∧ (𝐵↑((𝑃 − 1) / 2)) ∈ ℝ) ∧ ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃)) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10196, 97, 77, 30, 99, 100syl221anc 1378 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10292, 95, 1013eqtrd 2837 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
10384, 86, 1023eqtr4d 2843 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃))
104 moddvds 15610 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ ∧ ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
10529, 18, 24, 104syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
106103, 105mpbid 235 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
10718, 24zsubcld 12080 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ)
108 dvdsabsb 15621 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
10916, 107, 108syl2anc 587 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
110106, 109mpbid 235 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
111 dvdsmod0 15605 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11229, 110, 111syl2anc 587 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
11367, 112eqtr3d 2835 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) = 0)
11426, 113abs00d 14798 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) = 0)
11519, 25, 114subeq0d 10994 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11610, 115pm2.61dane 3074 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  cdif 3878  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377   mod cmo 13232  cexp 13425  abscabs 14585  cdvds 15599  cprime 16005   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-lgs 25879
This theorem is referenced by:  lgsdir  25916
  Copyright terms: Public domain W3C validator