MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltl Structured version   Visualization version   GIF version

Theorem fermltl 16583
Description: Fermat's little theorem. When 𝑃 is prime, 𝐴𝑃𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 16477 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 dvdsmodexp 16071 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑃𝐴) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
323exp 1118 . . . 4 (𝑃 ∈ ℕ → (𝑃 ∈ ℕ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))))
41, 1, 3sylc 65 . . 3 (𝑃 ∈ ℙ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
54adantr 481 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
6 coprm 16514 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
7 prmz 16478 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8 gcdcom 16320 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
97, 8sylan 580 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
109eqeq1d 2738 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
116, 10bitrd 278 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝐴 gcd 𝑃) = 1))
12 simp2 1136 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℤ)
1313ad2ant1 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℕ)
1413phicld 16571 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ)
1514nnnn0d 12395 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ0)
16 zexpcl 13899 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1712, 15, 16syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1817zred 12528 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℝ)
19 1red 11078 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 1 ∈ ℝ)
2013nnrpd 12872 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℝ+)
21 eulerth 16582 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
221, 21syl3an1 1162 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
23 modmul1 13746 . . . . . 6 ((((𝐴↑(ϕ‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
2418, 19, 12, 20, 22, 23syl221anc 1380 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
25 phiprm 16576 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
26253ad2ant1 1132 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) = (𝑃 − 1))
2726oveq2d 7354 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(𝑃 − 1)))
2827oveq1d 7353 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = ((𝐴↑(𝑃 − 1)) · 𝐴))
2912zcnd 12529 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℂ)
30 expm1t 13913 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3129, 13, 30syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3228, 31eqtr4d 2779 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = (𝐴𝑃))
3332oveq1d 7353 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((𝐴𝑃) mod 𝑃))
3429mulid2d 11095 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (1 · 𝐴) = 𝐴)
3534oveq1d 7353 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((1 · 𝐴) mod 𝑃) = (𝐴 mod 𝑃))
3624, 33, 353eqtr3d 2784 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
37363expia 1120 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑃) = 1 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
3811, 37sylbid 239 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
395, 38pm2.61d 179 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5093  cfv 6480  (class class class)co 7338  cc 10971  cr 10972  1c1 10974   · cmul 10978  cmin 11307  cn 12075  0cn0 12335  cz 12421  +crp 12832   mod cmo 13691  cexp 13884  cdvds 16063   gcd cgcd 16301  cprime 16474  ϕcphi 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-pre-sup 11051
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-2o 8369  df-oadd 8372  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-sup 9300  df-inf 9301  df-dju 9759  df-card 9797  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-nn 12076  df-2 12138  df-3 12139  df-n0 12336  df-xnn0 12408  df-z 12422  df-uz 12685  df-rp 12833  df-fz 13342  df-fzo 13485  df-fl 13614  df-mod 13692  df-seq 13824  df-exp 13885  df-hash 14147  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-dvds 16064  df-gcd 16302  df-prm 16475  df-phi 16565
This theorem is referenced by:  fermltlchr  31858  znfermltl  31859
  Copyright terms: Public domain W3C validator