MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltl Structured version   Visualization version   GIF version

Theorem fermltl 16109
Description: Fermat's little theorem. When 𝑃 is prime, 𝐴𝑃𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 16006 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 dvdsmodexp 15603 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑃𝐴) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
323exp 1111 . . . 4 (𝑃 ∈ ℕ → (𝑃 ∈ ℕ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))))
41, 1, 3sylc 65 . . 3 (𝑃 ∈ ℙ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
54adantr 481 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
6 coprm 16043 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
7 prmz 16007 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8 gcdcom 15850 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
97, 8sylan 580 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
109eqeq1d 2820 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
116, 10bitrd 280 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝐴 gcd 𝑃) = 1))
12 simp2 1129 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℤ)
1313ad2ant1 1125 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℕ)
1413phicld 16097 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ)
1514nnnn0d 11943 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ0)
16 zexpcl 13432 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1712, 15, 16syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1817zred 12075 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℝ)
19 1red 10630 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 1 ∈ ℝ)
2013nnrpd 12417 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℝ+)
21 eulerth 16108 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
221, 21syl3an1 1155 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
23 modmul1 13280 . . . . . 6 ((((𝐴↑(ϕ‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
2418, 19, 12, 20, 22, 23syl221anc 1373 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
25 phiprm 16102 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
26253ad2ant1 1125 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) = (𝑃 − 1))
2726oveq2d 7161 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(𝑃 − 1)))
2827oveq1d 7160 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = ((𝐴↑(𝑃 − 1)) · 𝐴))
2912zcnd 12076 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℂ)
30 expm1t 13445 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3129, 13, 30syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3228, 31eqtr4d 2856 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = (𝐴𝑃))
3332oveq1d 7160 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((𝐴𝑃) mod 𝑃))
3429mulid2d 10647 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (1 · 𝐴) = 𝐴)
3534oveq1d 7160 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((1 · 𝐴) mod 𝑃) = (𝐴 mod 𝑃))
3624, 33, 353eqtr3d 2861 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
37363expia 1113 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑃) = 1 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
3811, 37sylbid 241 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
395, 38pm2.61d 180 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  1c1 10526   · cmul 10530  cmin 10858  cn 11626  0cn0 11885  cz 11969  +crp 12377   mod cmo 13225  cexp 13417  cdvds 15595   gcd cgcd 15831  cprime 16003  ϕcphi 16089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-phi 16091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator