MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltl Structured version   Visualization version   GIF version

Theorem fermltl 16761
Description: Fermat's little theorem. When 𝑃 is prime, 𝐴𝑃𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 16651 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 dvdsmodexp 16237 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑃𝐴) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
323exp 1119 . . . 4 (𝑃 ∈ ℕ → (𝑃 ∈ ℕ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))))
41, 1, 3sylc 65 . . 3 (𝑃 ∈ ℙ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
54adantr 480 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
6 coprm 16688 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
7 prmz 16652 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8 gcdcom 16490 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
97, 8sylan 580 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
109eqeq1d 2732 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
116, 10bitrd 279 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝐴 gcd 𝑃) = 1))
12 simp2 1137 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℤ)
1313ad2ant1 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℕ)
1413phicld 16749 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ)
1514nnnn0d 12510 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ0)
16 zexpcl 14048 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1712, 15, 16syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1817zred 12645 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℝ)
19 1red 11182 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 1 ∈ ℝ)
2013nnrpd 13000 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℝ+)
21 eulerth 16760 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
221, 21syl3an1 1163 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
23 modmul1 13896 . . . . . 6 ((((𝐴↑(ϕ‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
2418, 19, 12, 20, 22, 23syl221anc 1383 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
25 phiprm 16754 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
26253ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) = (𝑃 − 1))
2726oveq2d 7406 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(𝑃 − 1)))
2827oveq1d 7405 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = ((𝐴↑(𝑃 − 1)) · 𝐴))
2912zcnd 12646 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℂ)
30 expm1t 14062 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3129, 13, 30syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3228, 31eqtr4d 2768 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = (𝐴𝑃))
3332oveq1d 7405 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((𝐴𝑃) mod 𝑃))
3429mullidd 11199 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (1 · 𝐴) = 𝐴)
3534oveq1d 7405 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((1 · 𝐴) mod 𝑃) = (𝐴 mod 𝑃))
3624, 33, 353eqtr3d 2773 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
37363expia 1121 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑃) = 1 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
3811, 37sylbid 240 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
395, 38pm2.61d 179 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  cz 12536  +crp 12958   mod cmo 13838  cexp 14033  cdvds 16229   gcd cgcd 16471  cprime 16648  ϕcphi 16741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743
This theorem is referenced by:  fermltlchr  21446  znfermltl  33344
  Copyright terms: Public domain W3C validator