MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fermltl Structured version   Visualization version   GIF version

Theorem fermltl 16821
Description: Fermat's little theorem. When 𝑃 is prime, 𝐴𝑃𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
Assertion
Ref Expression
fermltl ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))

Proof of Theorem fermltl
StepHypRef Expression
1 prmnn 16711 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 dvdsmodexp 16298 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑃𝐴) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
323exp 1120 . . . 4 (𝑃 ∈ ℕ → (𝑃 ∈ ℕ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))))
41, 1, 3sylc 65 . . 3 (𝑃 ∈ ℙ → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
54adantr 480 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
6 coprm 16748 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
7 prmz 16712 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8 gcdcom 16550 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
97, 8sylan 580 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
109eqeq1d 2739 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
116, 10bitrd 279 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝐴 gcd 𝑃) = 1))
12 simp2 1138 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℤ)
1313ad2ant1 1134 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℕ)
1413phicld 16809 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ)
1514nnnn0d 12587 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) ∈ ℕ0)
16 zexpcl 14117 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1712, 15, 16syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
1817zred 12722 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) ∈ ℝ)
19 1red 11262 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 1 ∈ ℝ)
2013nnrpd 13075 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝑃 ∈ ℝ+)
21 eulerth 16820 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
221, 21syl3an1 1164 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
23 modmul1 13965 . . . . . 6 ((((𝐴↑(ϕ‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
2418, 19, 12, 20, 22, 23syl221anc 1383 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((1 · 𝐴) mod 𝑃))
25 phiprm 16814 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
26253ad2ant1 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (ϕ‘𝑃) = (𝑃 − 1))
2726oveq2d 7447 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(𝑃 − 1)))
2827oveq1d 7446 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = ((𝐴↑(𝑃 − 1)) · 𝐴))
2912zcnd 12723 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → 𝐴 ∈ ℂ)
30 expm1t 14131 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3129, 13, 30syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (𝐴𝑃) = ((𝐴↑(𝑃 − 1)) · 𝐴))
3228, 31eqtr4d 2780 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) · 𝐴) = (𝐴𝑃))
3332oveq1d 7446 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (((𝐴↑(ϕ‘𝑃)) · 𝐴) mod 𝑃) = ((𝐴𝑃) mod 𝑃))
3429mullidd 11279 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → (1 · 𝐴) = 𝐴)
3534oveq1d 7446 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((1 · 𝐴) mod 𝑃) = (𝐴 mod 𝑃))
3624, 33, 353eqtr3d 2785 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
37363expia 1122 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑃) = 1 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
3811, 37sylbid 240 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃)))
395, 38pm2.61d 179 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   · cmul 11160  cmin 11492  cn 12266  0cn0 12526  cz 12613  +crp 13034   mod cmo 13909  cexp 14102  cdvds 16290   gcd cgcd 16531  cprime 16708  ϕcphi 16801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803
This theorem is referenced by:  fermltlchr  21544  znfermltl  33394
  Copyright terms: Public domain W3C validator