MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180 Structured version   Visualization version   GIF version

Theorem ang180 25391
Description: The sum of angles 𝑚𝐴𝐵𝐶 + 𝑚𝐵𝐶𝐴 + 𝑚𝐶𝐴𝐵 in a triangle adds up to either π or , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
ang180 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ang180
StepHypRef Expression
1 simpl3 1189 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶 ∈ ℂ)
2 simpl2 1188 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵 ∈ ℂ)
31, 2subcld 10996 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐵) ∈ ℂ)
4 simpr2 1191 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵𝐶)
54necomd 3071 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶𝐵)
61, 2, 5subne0d 11005 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐵) ≠ 0)
7 simpl1 1187 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴 ∈ ℂ)
87, 2subcld 10996 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐵) ∈ ℂ)
9 simpr1 1190 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴𝐵)
107, 2, 9subne0d 11005 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐵) ≠ 0)
11 ang.1 . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
1211angneg 25380 . . . . . 6 ((((𝐶𝐵) ∈ ℂ ∧ (𝐶𝐵) ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = ((𝐶𝐵)𝐹(𝐴𝐵)))
133, 6, 8, 10, 12syl22anc 836 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = ((𝐶𝐵)𝐹(𝐴𝐵)))
141, 2negsubdi2d 11012 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐶𝐵) = (𝐵𝐶))
152, 1, 7nnncan2d 11031 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐵𝐴) − (𝐶𝐴)) = (𝐵𝐶))
1614, 15eqtr4d 2859 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐶𝐵) = ((𝐵𝐴) − (𝐶𝐴)))
177, 2negsubdi2d 11012 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐴𝐵) = (𝐵𝐴))
1816, 17oveq12d 7173 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = (((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)))
1913, 18eqtr3d 2858 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐶𝐵)𝐹(𝐴𝐵)) = (((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)))
207, 1subcld 10996 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐶) ∈ ℂ)
21 simpr3 1192 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴𝐶)
227, 1, 21subne0d 11005 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐶) ≠ 0)
232, 1subcld 10996 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐶) ∈ ℂ)
242, 1, 4subne0d 11005 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐶) ≠ 0)
2511angneg 25380 . . . . . 6 ((((𝐴𝐶) ∈ ℂ ∧ (𝐴𝐶) ≠ 0) ∧ ((𝐵𝐶) ∈ ℂ ∧ (𝐵𝐶) ≠ 0)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐴𝐶)𝐹(𝐵𝐶)))
2620, 22, 23, 24, 25syl22anc 836 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐴𝐶)𝐹(𝐵𝐶)))
277, 1negsubdi2d 11012 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐴𝐶) = (𝐶𝐴))
282, 1negsubdi2d 11012 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐵𝐶) = (𝐶𝐵))
291, 2, 7nnncan2d 11031 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐶𝐴) − (𝐵𝐴)) = (𝐶𝐵))
3028, 29eqtr4d 2859 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐵𝐶) = ((𝐶𝐴) − (𝐵𝐴)))
3127, 30oveq12d 7173 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴))))
3226, 31eqtr3d 2858 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐴𝐶)𝐹(𝐵𝐶)) = ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴))))
3319, 32oveq12d 7173 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) = ((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))))
3433oveq1d 7170 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) = (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))))
352, 7subcld 10996 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ∈ ℂ)
369necomd 3071 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵𝐴)
372, 7, 36subne0d 11005 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ≠ 0)
381, 7subcld 10996 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐴) ∈ ℂ)
3921necomd 3071 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶𝐴)
401, 7, 39subne0d 11005 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐴) ≠ 0)
412, 1, 7, 4subneintr2d 11042 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ≠ (𝐶𝐴))
4211ang180lem5 25390 . . 3 ((((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) ∧ ((𝐶𝐴) ∈ ℂ ∧ (𝐶𝐴) ≠ 0) ∧ (𝐵𝐴) ≠ (𝐶𝐴)) → (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
4335, 37, 38, 40, 41, 42syl221anc 1377 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
4434, 43eqeltrd 2913 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4566  {cpr 4568  cfv 6354  (class class class)co 7155  cmpo 7157  cc 10534  0cc0 10536   + caddc 10539  cmin 10869  -cneg 10870   / cdiv 11296  cim 14456  πcpi 15419  logclog 25137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator