MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180 Structured version   Visualization version   GIF version

Theorem ang180 25400
Description: The sum of angles 𝑚𝐴𝐵𝐶 + 𝑚𝐵𝐶𝐴 + 𝑚𝐶𝐴𝐵 in a triangle adds up to either π or , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
ang180 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ang180
StepHypRef Expression
1 simpl3 1190 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶 ∈ ℂ)
2 simpl2 1189 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵 ∈ ℂ)
31, 2subcld 10986 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐵) ∈ ℂ)
4 simpr2 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵𝐶)
54necomd 3042 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶𝐵)
61, 2, 5subne0d 10995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐵) ≠ 0)
7 simpl1 1188 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴 ∈ ℂ)
87, 2subcld 10986 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐵) ∈ ℂ)
9 simpr1 1191 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴𝐵)
107, 2, 9subne0d 10995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐵) ≠ 0)
11 ang.1 . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
1211angneg 25389 . . . . . 6 ((((𝐶𝐵) ∈ ℂ ∧ (𝐶𝐵) ≠ 0) ∧ ((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ≠ 0)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = ((𝐶𝐵)𝐹(𝐴𝐵)))
133, 6, 8, 10, 12syl22anc 837 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = ((𝐶𝐵)𝐹(𝐴𝐵)))
141, 2negsubdi2d 11002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐶𝐵) = (𝐵𝐶))
152, 1, 7nnncan2d 11021 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐵𝐴) − (𝐶𝐴)) = (𝐵𝐶))
1614, 15eqtr4d 2836 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐶𝐵) = ((𝐵𝐴) − (𝐶𝐴)))
177, 2negsubdi2d 11002 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐴𝐵) = (𝐵𝐴))
1816, 17oveq12d 7153 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐶𝐵)𝐹-(𝐴𝐵)) = (((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)))
1913, 18eqtr3d 2835 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐶𝐵)𝐹(𝐴𝐵)) = (((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)))
207, 1subcld 10986 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐶) ∈ ℂ)
21 simpr3 1193 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐴𝐶)
227, 1, 21subne0d 10995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐴𝐶) ≠ 0)
232, 1subcld 10986 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐶) ∈ ℂ)
242, 1, 4subne0d 10995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐶) ≠ 0)
2511angneg 25389 . . . . . 6 ((((𝐴𝐶) ∈ ℂ ∧ (𝐴𝐶) ≠ 0) ∧ ((𝐵𝐶) ∈ ℂ ∧ (𝐵𝐶) ≠ 0)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐴𝐶)𝐹(𝐵𝐶)))
2620, 22, 23, 24, 25syl22anc 837 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐴𝐶)𝐹(𝐵𝐶)))
277, 1negsubdi2d 11002 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐴𝐶) = (𝐶𝐴))
282, 1negsubdi2d 11002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐵𝐶) = (𝐶𝐵))
291, 2, 7nnncan2d 11021 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐶𝐴) − (𝐵𝐴)) = (𝐶𝐵))
3028, 29eqtr4d 2836 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → -(𝐵𝐶) = ((𝐶𝐴) − (𝐵𝐴)))
3127, 30oveq12d 7153 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (-(𝐴𝐶)𝐹-(𝐵𝐶)) = ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴))))
3226, 31eqtr3d 2835 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((𝐴𝐶)𝐹(𝐵𝐶)) = ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴))))
3319, 32oveq12d 7153 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) = ((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))))
3433oveq1d 7150 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) = (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))))
352, 7subcld 10986 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ∈ ℂ)
369necomd 3042 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐵𝐴)
372, 7, 36subne0d 10995 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ≠ 0)
381, 7subcld 10986 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐴) ∈ ℂ)
3921necomd 3042 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → 𝐶𝐴)
401, 7, 39subne0d 10995 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐶𝐴) ≠ 0)
412, 1, 7, 4subneintr2d 11032 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (𝐵𝐴) ≠ (𝐶𝐴))
4211ang180lem5 25399 . . 3 ((((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) ∧ ((𝐶𝐴) ∈ ℂ ∧ (𝐶𝐴) ≠ 0) ∧ (𝐵𝐴) ≠ (𝐶𝐴)) → (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
4335, 37, 38, 40, 41, 42syl221anc 1378 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → (((((𝐵𝐴) − (𝐶𝐴))𝐹(𝐵𝐴)) + ((𝐶𝐴)𝐹((𝐶𝐴) − (𝐵𝐴)))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
4434, 43eqeltrd 2890 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cdif 3878  {csn 4525  {cpr 4527  cfv 6324  (class class class)co 7135  cmpo 7137  cc 10524  0cc0 10526   + caddc 10529  cmin 10859  -cneg 10860   / cdiv 11286  cim 14449  πcpi 15412  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator