MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval2 Structured version   Visualization version   GIF version

Theorem splval2 14706
Description: Value of a splice, assuming the input word 𝑆 has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
splval2.a (𝜑𝐴 ∈ Word 𝑋)
splval2.b (𝜑𝐵 ∈ Word 𝑋)
splval2.c (𝜑𝐶 ∈ Word 𝑋)
splval2.r (𝜑𝑅 ∈ Word 𝑋)
splval2.s (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
splval2.f (𝜑𝐹 = (♯‘𝐴))
splval2.t (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
Assertion
Ref Expression
splval2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))

Proof of Theorem splval2
StepHypRef Expression
1 splval2.s . . . 4 (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
2 splval2.a . . . . . 6 (𝜑𝐴 ∈ Word 𝑋)
3 splval2.b . . . . . 6 (𝜑𝐵 ∈ Word 𝑋)
4 ccatcl 14523 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (𝐴 ++ 𝐵) ∈ Word 𝑋)
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑋)
6 splval2.c . . . . 5 (𝜑𝐶 ∈ Word 𝑋)
7 ccatcl 14523 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
85, 6, 7syl2anc 584 . . . 4 (𝜑 → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
91, 8eqeltrd 2833 . . 3 (𝜑𝑆 ∈ Word 𝑋)
10 splval2.f . . . 4 (𝜑𝐹 = (♯‘𝐴))
11 lencl 14482 . . . . 5 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
122, 11syl 17 . . . 4 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1310, 12eqeltrd 2833 . . 3 (𝜑𝐹 ∈ ℕ0)
14 splval2.t . . . 4 (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
15 lencl 14482 . . . . . 6 (𝐵 ∈ Word 𝑋 → (♯‘𝐵) ∈ ℕ0)
163, 15syl 17 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ0)
1713, 16nn0addcld 12535 . . . 4 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ ℕ0)
1814, 17eqeltrd 2833 . . 3 (𝜑𝑇 ∈ ℕ0)
19 splval2.r . . 3 (𝜑𝑅 ∈ Word 𝑋)
20 splval 14700 . . 3 ((𝑆 ∈ Word 𝑋 ∧ (𝐹 ∈ ℕ0𝑇 ∈ ℕ0𝑅 ∈ Word 𝑋)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
219, 13, 18, 19, 20syl13anc 1372 . 2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
22 nn0uz 12863 . . . . . . . . . 10 0 = (ℤ‘0)
2313, 22eleqtrdi 2843 . . . . . . . . 9 (𝜑𝐹 ∈ (ℤ‘0))
2413nn0zd 12583 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℤ)
2524uzidd 12837 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℤ𝐹))
26 uzaddcl 12887 . . . . . . . . . . 11 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝐵) ∈ ℕ0) → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2725, 16, 26syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2814, 27eqeltrd 2833 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
29 elfzuzb 13494 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) ↔ (𝐹 ∈ (ℤ‘0) ∧ 𝑇 ∈ (ℤ𝐹)))
3023, 28, 29sylanbrc 583 . . . . . . . 8 (𝜑𝐹 ∈ (0...𝑇))
3118, 22eleqtrdi 2843 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ‘0))
32 ccatlen 14524 . . . . . . . . . . . 12 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
335, 6, 32syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
341fveq2d 6895 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) = (♯‘((𝐴 ++ 𝐵) ++ 𝐶)))
3510oveq1d 7423 . . . . . . . . . . . . 13 (𝜑 → (𝐹 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
36 ccatlen 14524 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
372, 3, 36syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3835, 14, 373eqtr4d 2782 . . . . . . . . . . . 12 (𝜑𝑇 = (♯‘(𝐴 ++ 𝐵)))
3938oveq1d 7423 . . . . . . . . . . 11 (𝜑 → (𝑇 + (♯‘𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
4033, 34, 393eqtr4d 2782 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = (𝑇 + (♯‘𝐶)))
4118nn0zd 12583 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
4241uzidd 12837 . . . . . . . . . . 11 (𝜑𝑇 ∈ (ℤ𝑇))
43 lencl 14482 . . . . . . . . . . . 12 (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈ ℕ0)
446, 43syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐶) ∈ ℕ0)
45 uzaddcl 12887 . . . . . . . . . . 11 ((𝑇 ∈ (ℤ𝑇) ∧ (♯‘𝐶) ∈ ℕ0) → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4642, 44, 45syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4740, 46eqeltrd 2833 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
48 elfzuzb 13494 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) ↔ (𝑇 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝑇)))
4931, 47, 48sylanbrc 583 . . . . . . . 8 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
50 ccatpfx 14650 . . . . . . . 8 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
519, 30, 49, 50syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
52 lencl 14482 . . . . . . . . . . . . . 14 (𝑆 ∈ Word 𝑋 → (♯‘𝑆) ∈ ℕ0)
539, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5453, 22eleqtrdi 2843 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
55 eluzfz2 13508 . . . . . . . . . . . 12 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
5654, 55syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
57 ccatpfx 14650 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
589, 49, 56, 57syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
59 pfxid 14633 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
609, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
6158, 60, 13eqtrd 2776 . . . . . . . . 9 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶))
62 pfxcl 14626 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
639, 62syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
64 swrdcl 14594 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
659, 64syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
66 pfxlen 14632 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
679, 49, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
6867, 38eqtrd 2772 . . . . . . . . . 10 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵)))
69 ccatopth 14665 . . . . . . . . . 10 ((((𝑆 prefix 𝑇) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋) ∧ ((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵))) → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7063, 65, 5, 6, 68, 69syl221anc 1381 . . . . . . . . 9 (𝜑 → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7161, 70mpbid 231 . . . . . . . 8 (𝜑 → ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶))
7271simpld 495 . . . . . . 7 (𝜑 → (𝑆 prefix 𝑇) = (𝐴 ++ 𝐵))
7351, 72eqtrd 2772 . . . . . 6 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵))
74 pfxcl 14626 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
759, 74syl 17 . . . . . . 7 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
76 swrdcl 14594 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
779, 76syl 17 . . . . . . 7 (𝜑 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
78 uztrn 12839 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
7947, 28, 78syl2anc 584 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
80 elfzuzb 13494 . . . . . . . . . 10 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
8123, 79, 80sylanbrc 583 . . . . . . . . 9 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
82 pfxlen 14632 . . . . . . . . 9 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
839, 81, 82syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
8483, 10eqtrd 2772 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴))
85 ccatopth 14665 . . . . . . 7 ((((𝑆 prefix 𝐹) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋) ∧ (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴)) → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8675, 77, 2, 3, 84, 85syl221anc 1381 . . . . . 6 (𝜑 → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8773, 86mpbid 231 . . . . 5 (𝜑 → ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵))
8887simpld 495 . . . 4 (𝜑 → (𝑆 prefix 𝐹) = 𝐴)
8988oveq1d 7423 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) = (𝐴 ++ 𝑅))
9071simprd 496 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)
9189, 90oveq12d 7426 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝑅) ++ 𝐶))
9221, 91eqtrd 2772 1 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cop 4634  cotp 4636  cfv 6543  (class class class)co 7408  0cc0 11109   + caddc 11112  0cn0 12471  cuz 12821  ...cfz 13483  chash 14289  Word cword 14463   ++ cconcat 14519   substr csubstr 14589   prefix cpfx 14619   splice csplice 14698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-concat 14520  df-substr 14590  df-pfx 14620  df-splice 14699
This theorem is referenced by:  efginvrel2  19594  efgredleme  19610  efgcpbllemb  19622  frgpnabllem1  19740
  Copyright terms: Public domain W3C validator