Proof of Theorem splval2
Step | Hyp | Ref
| Expression |
1 | | splval2.s |
. . . 4
⊢ (𝜑 → 𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶)) |
2 | | splval2.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Word 𝑋) |
3 | | splval2.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ Word 𝑋) |
4 | | ccatcl 13963 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) → (𝐴 ++ 𝐵) ∈ Word 𝑋) |
5 | 2, 3, 4 | syl2anc 588 |
. . . . 5
⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑋) |
6 | | splval2.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Word 𝑋) |
7 | | ccatcl 13963 |
. . . . 5
⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋) |
8 | 5, 6, 7 | syl2anc 588 |
. . . 4
⊢ (𝜑 → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋) |
9 | 1, 8 | eqeltrd 2853 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Word 𝑋) |
10 | | splval2.f |
. . . 4
⊢ (𝜑 → 𝐹 = (♯‘𝐴)) |
11 | | lencl 13922 |
. . . . 5
⊢ (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈
ℕ0) |
12 | 2, 11 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘𝐴) ∈
ℕ0) |
13 | 10, 12 | eqeltrd 2853 |
. . 3
⊢ (𝜑 → 𝐹 ∈
ℕ0) |
14 | | splval2.t |
. . . 4
⊢ (𝜑 → 𝑇 = (𝐹 + (♯‘𝐵))) |
15 | | lencl 13922 |
. . . . . 6
⊢ (𝐵 ∈ Word 𝑋 → (♯‘𝐵) ∈
ℕ0) |
16 | 3, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
17 | 13, 16 | nn0addcld 11988 |
. . . 4
⊢ (𝜑 → (𝐹 + (♯‘𝐵)) ∈
ℕ0) |
18 | 14, 17 | eqeltrd 2853 |
. . 3
⊢ (𝜑 → 𝑇 ∈
ℕ0) |
19 | | splval2.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Word 𝑋) |
20 | | splval 14150 |
. . 3
⊢ ((𝑆 ∈ Word 𝑋 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ ℕ0
∧ 𝑅 ∈ Word 𝑋)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
21 | 9, 13, 18, 19, 20 | syl13anc 1370 |
. 2
⊢ (𝜑 → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
22 | | nn0uz 12310 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
23 | 13, 22 | eleqtrdi 2863 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈
(ℤ≥‘0)) |
24 | 13 | nn0zd 12114 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ ℤ) |
25 | 24 | uzidd 12288 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℤ≥‘𝐹)) |
26 | | uzaddcl 12334 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈
(ℤ≥‘𝐹) ∧ (♯‘𝐵) ∈ ℕ0) → (𝐹 + (♯‘𝐵)) ∈
(ℤ≥‘𝐹)) |
27 | 25, 16, 26 | syl2anc 588 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 + (♯‘𝐵)) ∈
(ℤ≥‘𝐹)) |
28 | 14, 27 | eqeltrd 2853 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐹)) |
29 | | elfzuzb 12940 |
. . . . . . . . 9
⊢ (𝐹 ∈ (0...𝑇) ↔ (𝐹 ∈ (ℤ≥‘0)
∧ 𝑇 ∈
(ℤ≥‘𝐹))) |
30 | 23, 28, 29 | sylanbrc 587 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) |
31 | 18, 22 | eleqtrdi 2863 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈
(ℤ≥‘0)) |
32 | | ccatlen 13964 |
. . . . . . . . . . . 12
⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋) → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶))) |
33 | 5, 6, 32 | syl2anc 588 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶))) |
34 | 1 | fveq2d 6660 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑆) = (♯‘((𝐴 ++ 𝐵) ++ 𝐶))) |
35 | 10 | oveq1d 7163 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
36 | | ccatlen 13964 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
37 | 2, 3, 36 | syl2anc 588 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
38 | 35, 14, 37 | 3eqtr4d 2804 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 = (♯‘(𝐴 ++ 𝐵))) |
39 | 38 | oveq1d 7163 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 + (♯‘𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶))) |
40 | 33, 34, 39 | 3eqtr4d 2804 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑆) = (𝑇 + (♯‘𝐶))) |
41 | 18 | nn0zd 12114 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℤ) |
42 | 41 | uzidd 12288 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝑇)) |
43 | | lencl 13922 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈
ℕ0) |
44 | 6, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐶) ∈
ℕ0) |
45 | | uzaddcl 12334 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈
(ℤ≥‘𝑇) ∧ (♯‘𝐶) ∈ ℕ0) → (𝑇 + (♯‘𝐶)) ∈
(ℤ≥‘𝑇)) |
46 | 42, 44, 45 | syl2anc 588 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 + (♯‘𝐶)) ∈
(ℤ≥‘𝑇)) |
47 | 40, 46 | eqeltrd 2853 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘𝑇)) |
48 | | elfzuzb 12940 |
. . . . . . . . 9
⊢ (𝑇 ∈
(0...(♯‘𝑆))
↔ (𝑇 ∈
(ℤ≥‘0) ∧ (♯‘𝑆) ∈ (ℤ≥‘𝑇))) |
49 | 31, 47, 48 | sylanbrc 587 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) |
50 | | ccatpfx 14100 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝑋 ∧ 𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝐹) ++ (𝑆 substr 〈𝐹, 𝑇〉)) = (𝑆 prefix 𝑇)) |
51 | 9, 30, 49, 50 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr 〈𝐹, 𝑇〉)) = (𝑆 prefix 𝑇)) |
52 | | lencl 13922 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ Word 𝑋 → (♯‘𝑆) ∈
ℕ0) |
53 | 9, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
54 | 53, 22 | eleqtrdi 2863 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘0)) |
55 | | eluzfz2 12954 |
. . . . . . . . . . . 12
⊢
((♯‘𝑆)
∈ (ℤ≥‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑆) ∈
(0...(♯‘𝑆))) |
57 | | ccatpfx 14100 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝑋 ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈
(0...(♯‘𝑆)))
→ ((𝑆 prefix 𝑇) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) |
58 | 9, 49, 56, 57 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) |
59 | | pfxid 14083 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝑋 → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
60 | 9, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
61 | 58, 60, 1 | 3eqtrd 2798 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = ((𝐴 ++ 𝐵) ++ 𝐶)) |
62 | | pfxcl 14076 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝑇) ∈ Word 𝑋) |
63 | 9, 62 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 prefix 𝑇) ∈ Word 𝑋) |
64 | | swrdcl 14044 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝑋 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝑋) |
65 | 9, 64 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝑋) |
66 | | pfxlen 14082 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Word 𝑋 ∧ 𝑇 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑇)) = 𝑇) |
67 | 9, 49, 66 | syl2anc 588 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(𝑆 prefix 𝑇)) = 𝑇) |
68 | 67, 38 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵))) |
69 | | ccatopth 14115 |
. . . . . . . . . 10
⊢ ((((𝑆 prefix 𝑇) ∈ Word 𝑋 ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝑋) ∧ ((𝐴 ++ 𝐵) ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵))) → (((𝑆 prefix 𝑇) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) = 𝐶))) |
70 | 63, 65, 5, 6, 68, 69 | syl221anc 1379 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆 prefix 𝑇) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) = 𝐶))) |
71 | 61, 70 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) = 𝐶)) |
72 | 71 | simpld 499 |
. . . . . . 7
⊢ (𝜑 → (𝑆 prefix 𝑇) = (𝐴 ++ 𝐵)) |
73 | 51, 72 | eqtrd 2794 |
. . . . . 6
⊢ (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr 〈𝐹, 𝑇〉)) = (𝐴 ++ 𝐵)) |
74 | | pfxcl 14076 |
. . . . . . . 8
⊢ (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝐹) ∈ Word 𝑋) |
75 | 9, 74 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝑋) |
76 | | swrdcl 14044 |
. . . . . . . 8
⊢ (𝑆 ∈ Word 𝑋 → (𝑆 substr 〈𝐹, 𝑇〉) ∈ Word 𝑋) |
77 | 9, 76 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑆 substr 〈𝐹, 𝑇〉) ∈ Word 𝑋) |
78 | | uztrn 12290 |
. . . . . . . . . . 11
⊢
(((♯‘𝑆)
∈ (ℤ≥‘𝑇) ∧ 𝑇 ∈ (ℤ≥‘𝐹)) → (♯‘𝑆) ∈
(ℤ≥‘𝐹)) |
79 | 47, 28, 78 | syl2anc 588 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘𝐹)) |
80 | | elfzuzb 12940 |
. . . . . . . . . 10
⊢ (𝐹 ∈
(0...(♯‘𝑆))
↔ (𝐹 ∈
(ℤ≥‘0) ∧ (♯‘𝑆) ∈ (ℤ≥‘𝐹))) |
81 | 23, 79, 80 | sylanbrc 587 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (0...(♯‘𝑆))) |
82 | | pfxlen 14082 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝑋 ∧ 𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹) |
83 | 9, 81, 82 | syl2anc 588 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹) |
84 | 83, 10 | eqtrd 2794 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴)) |
85 | | ccatopth 14115 |
. . . . . . 7
⊢ ((((𝑆 prefix 𝐹) ∈ Word 𝑋 ∧ (𝑆 substr 〈𝐹, 𝑇〉) ∈ Word 𝑋) ∧ (𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴)) → (((𝑆 prefix 𝐹) ++ (𝑆 substr 〈𝐹, 𝑇〉)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr 〈𝐹, 𝑇〉) = 𝐵))) |
86 | 75, 77, 2, 3, 84, 85 | syl221anc 1379 |
. . . . . 6
⊢ (𝜑 → (((𝑆 prefix 𝐹) ++ (𝑆 substr 〈𝐹, 𝑇〉)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr 〈𝐹, 𝑇〉) = 𝐵))) |
87 | 73, 86 | mpbid 235 |
. . . . 5
⊢ (𝜑 → ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr 〈𝐹, 𝑇〉) = 𝐵)) |
88 | 87 | simpld 499 |
. . . 4
⊢ (𝜑 → (𝑆 prefix 𝐹) = 𝐴) |
89 | 88 | oveq1d 7163 |
. . 3
⊢ (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) = (𝐴 ++ 𝑅)) |
90 | 71 | simprd 500 |
. . 3
⊢ (𝜑 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) = 𝐶) |
91 | 89, 90 | oveq12d 7166 |
. 2
⊢ (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = ((𝐴 ++ 𝑅) ++ 𝐶)) |
92 | 21, 91 | eqtrd 2794 |
1
⊢ (𝜑 → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = ((𝐴 ++ 𝑅) ++ 𝐶)) |