MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval2 Structured version   Visualization version   GIF version

Theorem splval2 14796
Description: Value of a splice, assuming the input word 𝑆 has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
splval2.a (𝜑𝐴 ∈ Word 𝑋)
splval2.b (𝜑𝐵 ∈ Word 𝑋)
splval2.c (𝜑𝐶 ∈ Word 𝑋)
splval2.r (𝜑𝑅 ∈ Word 𝑋)
splval2.s (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
splval2.f (𝜑𝐹 = (♯‘𝐴))
splval2.t (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
Assertion
Ref Expression
splval2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))

Proof of Theorem splval2
StepHypRef Expression
1 splval2.s . . . 4 (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
2 splval2.a . . . . . 6 (𝜑𝐴 ∈ Word 𝑋)
3 splval2.b . . . . . 6 (𝜑𝐵 ∈ Word 𝑋)
4 ccatcl 14613 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (𝐴 ++ 𝐵) ∈ Word 𝑋)
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑋)
6 splval2.c . . . . 5 (𝜑𝐶 ∈ Word 𝑋)
7 ccatcl 14613 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
85, 6, 7syl2anc 584 . . . 4 (𝜑 → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
91, 8eqeltrd 2840 . . 3 (𝜑𝑆 ∈ Word 𝑋)
10 splval2.f . . . 4 (𝜑𝐹 = (♯‘𝐴))
11 lencl 14572 . . . . 5 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
122, 11syl 17 . . . 4 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1310, 12eqeltrd 2840 . . 3 (𝜑𝐹 ∈ ℕ0)
14 splval2.t . . . 4 (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
15 lencl 14572 . . . . . 6 (𝐵 ∈ Word 𝑋 → (♯‘𝐵) ∈ ℕ0)
163, 15syl 17 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ0)
1713, 16nn0addcld 12593 . . . 4 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ ℕ0)
1814, 17eqeltrd 2840 . . 3 (𝜑𝑇 ∈ ℕ0)
19 splval2.r . . 3 (𝜑𝑅 ∈ Word 𝑋)
20 splval 14790 . . 3 ((𝑆 ∈ Word 𝑋 ∧ (𝐹 ∈ ℕ0𝑇 ∈ ℕ0𝑅 ∈ Word 𝑋)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
219, 13, 18, 19, 20syl13anc 1373 . 2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
22 nn0uz 12921 . . . . . . . . . 10 0 = (ℤ‘0)
2313, 22eleqtrdi 2850 . . . . . . . . 9 (𝜑𝐹 ∈ (ℤ‘0))
2413nn0zd 12641 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℤ)
2524uzidd 12895 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℤ𝐹))
26 uzaddcl 12947 . . . . . . . . . . 11 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝐵) ∈ ℕ0) → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2725, 16, 26syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2814, 27eqeltrd 2840 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
29 elfzuzb 13559 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) ↔ (𝐹 ∈ (ℤ‘0) ∧ 𝑇 ∈ (ℤ𝐹)))
3023, 28, 29sylanbrc 583 . . . . . . . 8 (𝜑𝐹 ∈ (0...𝑇))
3118, 22eleqtrdi 2850 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ‘0))
32 ccatlen 14614 . . . . . . . . . . . 12 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
335, 6, 32syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
341fveq2d 6909 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) = (♯‘((𝐴 ++ 𝐵) ++ 𝐶)))
3510oveq1d 7447 . . . . . . . . . . . . 13 (𝜑 → (𝐹 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
36 ccatlen 14614 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
372, 3, 36syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3835, 14, 373eqtr4d 2786 . . . . . . . . . . . 12 (𝜑𝑇 = (♯‘(𝐴 ++ 𝐵)))
3938oveq1d 7447 . . . . . . . . . . 11 (𝜑 → (𝑇 + (♯‘𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
4033, 34, 393eqtr4d 2786 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = (𝑇 + (♯‘𝐶)))
4118nn0zd 12641 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
4241uzidd 12895 . . . . . . . . . . 11 (𝜑𝑇 ∈ (ℤ𝑇))
43 lencl 14572 . . . . . . . . . . . 12 (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈ ℕ0)
446, 43syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐶) ∈ ℕ0)
45 uzaddcl 12947 . . . . . . . . . . 11 ((𝑇 ∈ (ℤ𝑇) ∧ (♯‘𝐶) ∈ ℕ0) → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4642, 44, 45syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4740, 46eqeltrd 2840 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
48 elfzuzb 13559 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) ↔ (𝑇 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝑇)))
4931, 47, 48sylanbrc 583 . . . . . . . 8 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
50 ccatpfx 14740 . . . . . . . 8 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
519, 30, 49, 50syl3anc 1372 . . . . . . 7 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
52 lencl 14572 . . . . . . . . . . . . . 14 (𝑆 ∈ Word 𝑋 → (♯‘𝑆) ∈ ℕ0)
539, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5453, 22eleqtrdi 2850 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
55 eluzfz2 13573 . . . . . . . . . . . 12 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
5654, 55syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
57 ccatpfx 14740 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
589, 49, 56, 57syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
59 pfxid 14723 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
609, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
6158, 60, 13eqtrd 2780 . . . . . . . . 9 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶))
62 pfxcl 14716 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
639, 62syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
64 swrdcl 14684 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
659, 64syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
66 pfxlen 14722 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
679, 49, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
6867, 38eqtrd 2776 . . . . . . . . . 10 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵)))
69 ccatopth 14755 . . . . . . . . . 10 ((((𝑆 prefix 𝑇) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋) ∧ ((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵))) → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7063, 65, 5, 6, 68, 69syl221anc 1382 . . . . . . . . 9 (𝜑 → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7161, 70mpbid 232 . . . . . . . 8 (𝜑 → ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶))
7271simpld 494 . . . . . . 7 (𝜑 → (𝑆 prefix 𝑇) = (𝐴 ++ 𝐵))
7351, 72eqtrd 2776 . . . . . 6 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵))
74 pfxcl 14716 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
759, 74syl 17 . . . . . . 7 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
76 swrdcl 14684 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
779, 76syl 17 . . . . . . 7 (𝜑 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
78 uztrn 12897 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
7947, 28, 78syl2anc 584 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
80 elfzuzb 13559 . . . . . . . . . 10 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
8123, 79, 80sylanbrc 583 . . . . . . . . 9 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
82 pfxlen 14722 . . . . . . . . 9 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
839, 81, 82syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
8483, 10eqtrd 2776 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴))
85 ccatopth 14755 . . . . . . 7 ((((𝑆 prefix 𝐹) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋) ∧ (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴)) → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8675, 77, 2, 3, 84, 85syl221anc 1382 . . . . . 6 (𝜑 → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8773, 86mpbid 232 . . . . 5 (𝜑 → ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵))
8887simpld 494 . . . 4 (𝜑 → (𝑆 prefix 𝐹) = 𝐴)
8988oveq1d 7447 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) = (𝐴 ++ 𝑅))
9071simprd 495 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)
9189, 90oveq12d 7450 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝑅) ++ 𝐶))
9221, 91eqtrd 2776 1 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cop 4631  cotp 4633  cfv 6560  (class class class)co 7432  0cc0 11156   + caddc 11159  0cn0 12528  cuz 12879  ...cfz 13548  chash 14370  Word cword 14553   ++ cconcat 14609   substr csubstr 14679   prefix cpfx 14709   splice csplice 14788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-substr 14680  df-pfx 14710  df-splice 14789
This theorem is referenced by:  efginvrel2  19746  efgredleme  19762  efgcpbllemb  19774  frgpnabllem1  19892
  Copyright terms: Public domain W3C validator