MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splval2 Structured version   Visualization version   GIF version

Theorem splval2 14652
Description: Value of a splice, assuming the input word 𝑆 has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
splval2.a (𝜑𝐴 ∈ Word 𝑋)
splval2.b (𝜑𝐵 ∈ Word 𝑋)
splval2.c (𝜑𝐶 ∈ Word 𝑋)
splval2.r (𝜑𝑅 ∈ Word 𝑋)
splval2.s (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
splval2.f (𝜑𝐹 = (♯‘𝐴))
splval2.t (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
Assertion
Ref Expression
splval2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))

Proof of Theorem splval2
StepHypRef Expression
1 splval2.s . . . 4 (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))
2 splval2.a . . . . . 6 (𝜑𝐴 ∈ Word 𝑋)
3 splval2.b . . . . . 6 (𝜑𝐵 ∈ Word 𝑋)
4 ccatcl 14469 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (𝐴 ++ 𝐵) ∈ Word 𝑋)
52, 3, 4syl2anc 585 . . . . 5 (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑋)
6 splval2.c . . . . 5 (𝜑𝐶 ∈ Word 𝑋)
7 ccatcl 14469 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
85, 6, 7syl2anc 585 . . . 4 (𝜑 → ((𝐴 ++ 𝐵) ++ 𝐶) ∈ Word 𝑋)
91, 8eqeltrd 2838 . . 3 (𝜑𝑆 ∈ Word 𝑋)
10 splval2.f . . . 4 (𝜑𝐹 = (♯‘𝐴))
11 lencl 14428 . . . . 5 (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈ ℕ0)
122, 11syl 17 . . . 4 (𝜑 → (♯‘𝐴) ∈ ℕ0)
1310, 12eqeltrd 2838 . . 3 (𝜑𝐹 ∈ ℕ0)
14 splval2.t . . . 4 (𝜑𝑇 = (𝐹 + (♯‘𝐵)))
15 lencl 14428 . . . . . 6 (𝐵 ∈ Word 𝑋 → (♯‘𝐵) ∈ ℕ0)
163, 15syl 17 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ0)
1713, 16nn0addcld 12484 . . . 4 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ ℕ0)
1814, 17eqeltrd 2838 . . 3 (𝜑𝑇 ∈ ℕ0)
19 splval2.r . . 3 (𝜑𝑅 ∈ Word 𝑋)
20 splval 14646 . . 3 ((𝑆 ∈ Word 𝑋 ∧ (𝐹 ∈ ℕ0𝑇 ∈ ℕ0𝑅 ∈ Word 𝑋)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
219, 13, 18, 19, 20syl13anc 1373 . 2 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
22 nn0uz 12812 . . . . . . . . . 10 0 = (ℤ‘0)
2313, 22eleqtrdi 2848 . . . . . . . . 9 (𝜑𝐹 ∈ (ℤ‘0))
2413nn0zd 12532 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℤ)
2524uzidd 12786 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℤ𝐹))
26 uzaddcl 12836 . . . . . . . . . . 11 ((𝐹 ∈ (ℤ𝐹) ∧ (♯‘𝐵) ∈ ℕ0) → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2725, 16, 26syl2anc 585 . . . . . . . . . 10 (𝜑 → (𝐹 + (♯‘𝐵)) ∈ (ℤ𝐹))
2814, 27eqeltrd 2838 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ𝐹))
29 elfzuzb 13442 . . . . . . . . 9 (𝐹 ∈ (0...𝑇) ↔ (𝐹 ∈ (ℤ‘0) ∧ 𝑇 ∈ (ℤ𝐹)))
3023, 28, 29sylanbrc 584 . . . . . . . 8 (𝜑𝐹 ∈ (0...𝑇))
3118, 22eleqtrdi 2848 . . . . . . . . 9 (𝜑𝑇 ∈ (ℤ‘0))
32 ccatlen 14470 . . . . . . . . . . . 12 (((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
335, 6, 32syl2anc 585 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴 ++ 𝐵) ++ 𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
341fveq2d 6851 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) = (♯‘((𝐴 ++ 𝐵) ++ 𝐶)))
3510oveq1d 7377 . . . . . . . . . . . . 13 (𝜑 → (𝐹 + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
36 ccatlen 14470 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
372, 3, 36syl2anc 585 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
3835, 14, 373eqtr4d 2787 . . . . . . . . . . . 12 (𝜑𝑇 = (♯‘(𝐴 ++ 𝐵)))
3938oveq1d 7377 . . . . . . . . . . 11 (𝜑 → (𝑇 + (♯‘𝐶)) = ((♯‘(𝐴 ++ 𝐵)) + (♯‘𝐶)))
4033, 34, 393eqtr4d 2787 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) = (𝑇 + (♯‘𝐶)))
4118nn0zd 12532 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
4241uzidd 12786 . . . . . . . . . . 11 (𝜑𝑇 ∈ (ℤ𝑇))
43 lencl 14428 . . . . . . . . . . . 12 (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈ ℕ0)
446, 43syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐶) ∈ ℕ0)
45 uzaddcl 12836 . . . . . . . . . . 11 ((𝑇 ∈ (ℤ𝑇) ∧ (♯‘𝐶) ∈ ℕ0) → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4642, 44, 45syl2anc 585 . . . . . . . . . 10 (𝜑 → (𝑇 + (♯‘𝐶)) ∈ (ℤ𝑇))
4740, 46eqeltrd 2838 . . . . . . . . 9 (𝜑 → (♯‘𝑆) ∈ (ℤ𝑇))
48 elfzuzb 13442 . . . . . . . . 9 (𝑇 ∈ (0...(♯‘𝑆)) ↔ (𝑇 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝑇)))
4931, 47, 48sylanbrc 584 . . . . . . . 8 (𝜑𝑇 ∈ (0...(♯‘𝑆)))
50 ccatpfx 14596 . . . . . . . 8 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
519, 30, 49, 50syl3anc 1372 . . . . . . 7 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝑆 prefix 𝑇))
52 lencl 14428 . . . . . . . . . . . . . 14 (𝑆 ∈ Word 𝑋 → (♯‘𝑆) ∈ ℕ0)
539, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
5453, 22eleqtrdi 2848 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑆) ∈ (ℤ‘0))
55 eluzfz2 13456 . . . . . . . . . . . 12 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
5654, 55syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
57 ccatpfx 14596 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
589, 49, 56, 57syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆)))
59 pfxid 14579 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
609, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
6158, 60, 13eqtrd 2781 . . . . . . . . 9 (𝜑 → ((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶))
62 pfxcl 14572 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
639, 62syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 prefix 𝑇) ∈ Word 𝑋)
64 swrdcl 14540 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
659, 64syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋)
66 pfxlen 14578 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝑋𝑇 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
679, 49, 66syl2anc 585 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = 𝑇)
6867, 38eqtrd 2777 . . . . . . . . . 10 (𝜑 → (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵)))
69 ccatopth 14611 . . . . . . . . . 10 ((((𝑆 prefix 𝑇) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) ∈ Word 𝑋) ∧ ((𝐴 ++ 𝐵) ∈ Word 𝑋𝐶 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝑇)) = (♯‘(𝐴 ++ 𝐵))) → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7063, 65, 5, 6, 68, 69syl221anc 1382 . . . . . . . . 9 (𝜑 → (((𝑆 prefix 𝑇) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝐵) ++ 𝐶) ↔ ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)))
7161, 70mpbid 231 . . . . . . . 8 (𝜑 → ((𝑆 prefix 𝑇) = (𝐴 ++ 𝐵) ∧ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶))
7271simpld 496 . . . . . . 7 (𝜑 → (𝑆 prefix 𝑇) = (𝐴 ++ 𝐵))
7351, 72eqtrd 2777 . . . . . 6 (𝜑 → ((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵))
74 pfxcl 14572 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
759, 74syl 17 . . . . . . 7 (𝜑 → (𝑆 prefix 𝐹) ∈ Word 𝑋)
76 swrdcl 14540 . . . . . . . 8 (𝑆 ∈ Word 𝑋 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
779, 76syl 17 . . . . . . 7 (𝜑 → (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋)
78 uztrn 12788 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ𝑇) ∧ 𝑇 ∈ (ℤ𝐹)) → (♯‘𝑆) ∈ (ℤ𝐹))
7947, 28, 78syl2anc 585 . . . . . . . . . 10 (𝜑 → (♯‘𝑆) ∈ (ℤ𝐹))
80 elfzuzb 13442 . . . . . . . . . 10 (𝐹 ∈ (0...(♯‘𝑆)) ↔ (𝐹 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ (ℤ𝐹)))
8123, 79, 80sylanbrc 584 . . . . . . . . 9 (𝜑𝐹 ∈ (0...(♯‘𝑆)))
82 pfxlen 14578 . . . . . . . . 9 ((𝑆 ∈ Word 𝑋𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
839, 81, 82syl2anc 585 . . . . . . . 8 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = 𝐹)
8483, 10eqtrd 2777 . . . . . . 7 (𝜑 → (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴))
85 ccatopth 14611 . . . . . . 7 ((((𝑆 prefix 𝐹) ∈ Word 𝑋 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) ∈ Word 𝑋) ∧ (𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (♯‘(𝑆 prefix 𝐹)) = (♯‘𝐴)) → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8675, 77, 2, 3, 84, 85syl221anc 1382 . . . . . 6 (𝜑 → (((𝑆 prefix 𝐹) ++ (𝑆 substr ⟨𝐹, 𝑇⟩)) = (𝐴 ++ 𝐵) ↔ ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵)))
8773, 86mpbid 231 . . . . 5 (𝜑 → ((𝑆 prefix 𝐹) = 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝑇⟩) = 𝐵))
8887simpld 496 . . . 4 (𝜑 → (𝑆 prefix 𝐹) = 𝐴)
8988oveq1d 7377 . . 3 (𝜑 → ((𝑆 prefix 𝐹) ++ 𝑅) = (𝐴 ++ 𝑅))
9071simprd 497 . . 3 (𝜑 → (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩) = 𝐶)
9189, 90oveq12d 7380 . 2 (𝜑 → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)) = ((𝐴 ++ 𝑅) ++ 𝐶))
9221, 91eqtrd 2777 1 (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cop 4597  cotp 4599  cfv 6501  (class class class)co 7362  0cc0 11058   + caddc 11061  0cn0 12420  cuz 12770  ...cfz 13431  chash 14237  Word cword 14409   ++ cconcat 14465   substr csubstr 14535   prefix cpfx 14565   splice csplice 14644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-substr 14536  df-pfx 14566  df-splice 14645
This theorem is referenced by:  efginvrel2  19516  efgredleme  19532  efgcpbllemb  19544  frgpnabllem1  19658
  Copyright terms: Public domain W3C validator