Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq Structured version   Visualization version   GIF version

Theorem acongeq 40343
Description: Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 40362. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
acongeq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))))

Proof of Theorem acongeq
StepHypRef Expression
1 2z 12067 . . . . . . 7 2 ∈ ℤ
2 nnz 12057 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
323ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
4 zmulcl 12084 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
51, 3, 4sylancr 590 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℤ)
6 elfzelz 12970 . . . . . . 7 (𝐵 ∈ (0...𝐴) → 𝐵 ∈ ℤ)
763ad2ant2 1132 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
8 congid 40331 . . . . . 6 (((2 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∥ (𝐵𝐵))
95, 7, 8syl2anc 587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∥ (𝐵𝐵))
109adantr 484 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵𝐵))
11 oveq2 7165 . . . . 5 (𝐵 = 𝐶 → (𝐵𝐵) = (𝐵𝐶))
1211adantl 485 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (𝐵𝐵) = (𝐵𝐶))
1310, 12breqtrd 5063 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵𝐶))
1413orcd 870 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))
15 elfzelz 12970 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℤ)
16153ad2ant3 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
177, 16zsubcld 12145 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
1817zcnd 12141 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℂ)
1918abscld 14858 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) ∈ ℝ)
20 nnre 11695 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21203ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
22 0re 10695 . . . . . . 7 0 ∈ ℝ
23 resubcl 11002 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 − 0) ∈ ℝ)
2421, 22, 23sylancl 589 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ∈ ℝ)
25 2re 11762 . . . . . . 7 2 ∈ ℝ
26 remulcl 10674 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2725, 21, 26sylancr 590 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℝ)
28 simp2 1135 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ (0...𝐴))
29 simp3 1136 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐴))
3024leidd 11258 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ≤ (𝐴 − 0))
31 fzmaxdif 40341 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0...𝐴)) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ (0...𝐴)) ∧ (𝐴 − 0) ≤ (𝐴 − 0)) → (abs‘(𝐵𝐶)) ≤ (𝐴 − 0))
323, 28, 3, 29, 30, 31syl221anc 1379 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) ≤ (𝐴 − 0))
33 nnrp 12455 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
34333ad2ant1 1131 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ+)
3521, 34ltaddrpd 12519 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 < (𝐴 + 𝐴))
3621recnd 10721 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
3736subid1d 11038 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
38362timesd 11931 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) = (𝐴 + 𝐴))
3935, 37, 383brtr4d 5069 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) < (2 · 𝐴))
4019, 24, 27, 32, 39lelttrd 10850 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
4140adantr 484 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
42 2nn 11761 . . . . . 6 2 ∈ ℕ
43 simpl1 1189 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐴 ∈ ℕ)
44 nnmulcl 11712 . . . . . 6 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
4542, 43, 44sylancr 590 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (2 · 𝐴) ∈ ℕ)
46 simpl2 1190 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 ∈ (0...𝐴))
4746, 6syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 ∈ ℤ)
48 simpl3 1191 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐶 ∈ (0...𝐴))
4948, 15syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐶 ∈ ℤ)
50 simpr 488 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → (2 · 𝐴) ∥ (𝐵𝐶))
51 congabseq 40334 . . . . 5 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶))
5245, 47, 49, 50, 51syl31anc 1371 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → ((abs‘(𝐵𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶))
5341, 52mpbid 235 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵𝐶)) → 𝐵 = 𝐶)
54 simpll2 1211 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ (0...𝐴))
55 elfzle1 12973 . . . . . . . . . . 11 (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵)
5654, 55syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐵)
577zred 12140 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
5816zred 12140 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
5958renegcld 11119 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℝ)
6057, 59resubcld 11120 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℝ)
6160recnd 10721 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℂ)
6261abscld 14858 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − -𝐶)) ∈ ℝ)
6362ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ∈ ℝ)
64 1re 10693 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
65 resubcl 11002 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
6621, 64, 65sylancl 589 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℝ)
6766renegcld 11119 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -(𝐴 − 1) ∈ ℝ)
6821, 67resubcld 11120 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) ∈ ℝ)
6968ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) ∈ ℝ)
7027ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈ ℝ)
717ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℤ)
7271zcnd 12141 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℂ)
7316znegcld 12142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℤ)
7473ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℤ)
7574zcnd 12141 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℂ)
7672, 75abssubd 14875 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) = (abs‘(-𝐶𝐵)))
77 0zd 12046 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ∈ ℤ)
78 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ (0...(𝐴 − 1)))
79 0zd 12046 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
80 1z 12065 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
81 zsubcl 12077 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐴 − 1) ∈ ℤ)
823, 80, 81sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℤ)
83 fzneg 40342 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8416, 79, 82, 83syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8584ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0)))
8678, 85mpbid 235 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...-0))
87 neg0 10984 . . . . . . . . . . . . . . . . 17 -0 = 0
8887a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -0 = 0)
8988oveq2d 7173 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (-(𝐴 − 1)...-0) = (-(𝐴 − 1)...0))
9086, 89eleqtrd 2855 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...0))
913ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐴 ∈ ℤ)
92 simp1 1134 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ)
9342, 92, 44sylancr 590 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℕ)
94 nnm1nn0 11989 . . . . . . . . . . . . . . . . . 18 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) ∈ ℕ0)
9695nn0ge0d 12011 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ ((2 · 𝐴) − 1))
97 0m0e0 11808 . . . . . . . . . . . . . . . . 17 (0 − 0) = 0
9897a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) = 0)
99 1cnd 10688 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 1 ∈ ℂ)
10036, 36, 99addsubassd 11069 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) − 1) = (𝐴 + (𝐴 − 1)))
10138oveq1d 7172 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) = ((𝐴 + 𝐴) − 1))
102 ax-1cn 10647 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
103 subcl 10937 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
10436, 102, 103sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℂ)
10536, 104subnegd 11056 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = (𝐴 + (𝐴 − 1)))
106100, 101, 1053eqtr4rd 2805 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = ((2 · 𝐴) − 1))
10796, 98, 1063brtr4d 5069 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) ≤ (𝐴 − -(𝐴 − 1)))
108107ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (0 − 0) ≤ (𝐴 − -(𝐴 − 1)))
109 fzmaxdif 40341 . . . . . . . . . . . . . 14 (((0 ∈ ℤ ∧ -𝐶 ∈ (-(𝐴 − 1)...0)) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ (0...𝐴)) ∧ (0 − 0) ≤ (𝐴 − -(𝐴 − 1))) → (abs‘(-𝐶𝐵)) ≤ (𝐴 − -(𝐴 − 1)))
11077, 90, 91, 54, 108, 109syl221anc 1379 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(-𝐶𝐵)) ≤ (𝐴 − -(𝐴 − 1)))
11176, 110eqbrtrd 5059 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ≤ (𝐴 − -(𝐴 − 1)))
11227ltm1d 11624 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) < (2 · 𝐴))
113106, 112eqbrtrd 5059 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴))
114113ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴))
11563, 69, 70, 111, 114lelttrd 10850 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) < (2 · 𝐴))
11693ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈ ℕ)
117 simplr 768 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∥ (𝐵 − -𝐶))
118 congabseq 40334 . . . . . . . . . . . 12 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶))
119116, 71, 74, 117, 118syl31anc 1371 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶))
120115, 119mpbid 235 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = -𝐶)
12156, 120breqtrd 5063 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ -𝐶)
122 elfzelz 12970 . . . . . . . . . . . 12 (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℤ)
123122zred 12140 . . . . . . . . . . 11 (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℝ)
124123adantl 485 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ ℝ)
125124le0neg1d 11263 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ≤ 0 ↔ 0 ≤ -𝐶))
126121, 125mpbird 260 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ≤ 0)
127 elfzle1 12973 . . . . . . . . 9 (𝐶 ∈ (0...(𝐴 − 1)) → 0 ≤ 𝐶)
128127adantl 485 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐶)
129 letri3 10778 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐶 = 0 ↔ (𝐶 ≤ 0 ∧ 0 ≤ 𝐶)))
130124, 22, 129sylancl 589 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 = 0 ↔ (𝐶 ≤ 0 ∧ 0 ≤ 𝐶)))
131126, 128, 130mpbir2and 712 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 = 0)
132131negeqd 10932 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = -0)
133132, 88eqtrd 2794 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = 0)
134133, 120, 1313eqtr4d 2804 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = 𝐶)
135 oveq2 7165 . . . . . . . . 9 (𝐶 = 𝐴 → (𝐵𝐶) = (𝐵𝐴))
136135adantl 485 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵𝐶) = (𝐵𝐴))
137136fveq2d 6668 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐶)) = (abs‘(𝐵𝐴)))
13840ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐶)) < (2 · 𝐴))
139137, 138eqbrtrrd 5061 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵𝐴)) < (2 · 𝐴))
14093ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℕ)
1417ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℤ)
1423ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℤ)
143 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵 − -𝐶))
1447zcnd 12141 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
14536, 36, 144ppncand 11089 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐴 + 𝐵))
14636, 144addcomd 10894 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
147145, 146eqtrd 2794 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐴))
148147ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐴))
149 oveq2 7165 . . . . . . . . . . . 12 (𝐶 = 𝐴 → (𝐵 + 𝐶) = (𝐵 + 𝐴))
150149adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 + 𝐶) = (𝐵 + 𝐴))
151148, 150eqtr4d 2797 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐶))
15238oveq1d 7172 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) + (𝐵𝐴)) = ((𝐴 + 𝐴) + (𝐵𝐴)))
153152ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵𝐴)) = ((𝐴 + 𝐴) + (𝐵𝐴)))
15416zcnd 12141 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℂ)
155144, 154subnegd 11056 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) = (𝐵 + 𝐶))
156155ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 − -𝐶) = (𝐵 + 𝐶))
157151, 153, 1563eqtr4d 2804 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵𝐴)) = (𝐵 − -𝐶))
158143, 157breqtrrd 5065 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴)))
1595ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℤ)
1607, 3zsubcld 12145 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵𝐴) ∈ ℤ)
161160ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵𝐴) ∈ ℤ)
162 dvdsadd 15717 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝐵𝐴) ∈ ℤ) → ((2 · 𝐴) ∥ (𝐵𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴))))
163159, 161, 162syl2anc 587 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) ∥ (𝐵𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵𝐴))))
164158, 163mpbird 260 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵𝐴))
165 congabseq 40334 . . . . . . 7 ((((2 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (2 · 𝐴) ∥ (𝐵𝐴)) → ((abs‘(𝐵𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴))
166140, 141, 142, 164, 165syl31anc 1371 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((abs‘(𝐵𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴))
167139, 166mpbid 235 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐴)
168 simpr 488 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
169167, 168eqtr4d 2797 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐶)
170 nnnn0 11955 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
1711703ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
172 nn0uz 12334 . . . . . . 7 0 = (ℤ‘0)
173171, 172eleqtrdi 2863 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ‘0))
174 fzm1 13050 . . . . . . 7 (𝐴 ∈ (ℤ‘0) → (𝐶 ∈ (0...𝐴) ↔ (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴)))
175174biimpa 480 . . . . . 6 ((𝐴 ∈ (ℤ‘0) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
176173, 29, 175syl2anc 587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
177176adantr 484 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))
178134, 169, 177mpjaodan 956 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → 𝐵 = 𝐶)
17953, 178jaodan 955 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))) → 𝐵 = 𝐶)
18014, 179impbida 800 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5037  cfv 6341  (class class class)co 7157  cc 10587  cr 10588  0cc0 10589  1c1 10590   + caddc 10592   · cmul 10594   < clt 10727  cle 10728  cmin 10922  -cneg 10923  cn 11688  2c2 11743  0cn0 11948  cz 12034  cuz 12296  +crp 12444  ...cfz 12953  abscabs 14655  cdvds 15669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-sup 8953  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-fz 12954  df-seq 13433  df-exp 13494  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-dvds 15670
This theorem is referenced by:  jm2.27a  40365
  Copyright terms: Public domain W3C validator