Proof of Theorem acongeq
Step | Hyp | Ref
| Expression |
1 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
2 | | nnz 12272 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
3 | 2 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ) |
4 | | zmulcl 12299 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝐴
∈ ℤ) → (2 · 𝐴) ∈ ℤ) |
5 | 1, 3, 4 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℤ) |
6 | | elfzelz 13185 |
. . . . . . 7
⊢ (𝐵 ∈ (0...𝐴) → 𝐵 ∈ ℤ) |
7 | 6 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ) |
8 | | congid 40709 |
. . . . . 6
⊢ (((2
· 𝐴) ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (2 · 𝐴)
∥ (𝐵 − 𝐵)) |
9 | 5, 7, 8 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∥ (𝐵 − 𝐵)) |
10 | 9 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵 − 𝐵)) |
11 | | oveq2 7263 |
. . . . 5
⊢ (𝐵 = 𝐶 → (𝐵 − 𝐵) = (𝐵 − 𝐶)) |
12 | 11 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (𝐵 − 𝐵) = (𝐵 − 𝐶)) |
13 | 10, 12 | breqtrd 5096 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → (2 · 𝐴) ∥ (𝐵 − 𝐶)) |
14 | 13 | orcd 869 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝐵 = 𝐶) → ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))) |
15 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℤ) |
16 | 15 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ) |
17 | 7, 16 | zsubcld 12360 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 𝐶) ∈ ℤ) |
18 | 17 | zcnd 12356 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 𝐶) ∈ ℂ) |
19 | 18 | abscld 15076 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − 𝐶)) ∈ ℝ) |
20 | | nnre 11910 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
21 | 20 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ) |
22 | | 0re 10908 |
. . . . . . 7
⊢ 0 ∈
ℝ |
23 | | resubcl 11215 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 −
0) ∈ ℝ) |
24 | 21, 22, 23 | sylancl 585 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ∈ ℝ) |
25 | | 2re 11977 |
. . . . . . 7
⊢ 2 ∈
ℝ |
26 | | remulcl 10887 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ 𝐴
∈ ℝ) → (2 · 𝐴) ∈ ℝ) |
27 | 25, 21, 26 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℝ) |
28 | | simp2 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ (0...𝐴)) |
29 | | simp3 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐴)) |
30 | 24 | leidd 11471 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) ≤ (𝐴 − 0)) |
31 | | fzmaxdif 40719 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0...𝐴)) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ (0...𝐴)) ∧ (𝐴 − 0) ≤ (𝐴 − 0)) → (abs‘(𝐵 − 𝐶)) ≤ (𝐴 − 0)) |
32 | 3, 28, 3, 29, 30, 31 | syl221anc 1379 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − 𝐶)) ≤ (𝐴 − 0)) |
33 | | nnrp 12670 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ+) |
34 | 33 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈
ℝ+) |
35 | 21, 34 | ltaddrpd 12734 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 < (𝐴 + 𝐴)) |
36 | 21 | recnd 10934 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ) |
37 | 36 | subid1d 11251 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴) |
38 | 36 | 2timesd 12146 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) = (𝐴 + 𝐴)) |
39 | 35, 37, 38 | 3brtr4d 5102 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) < (2 · 𝐴)) |
40 | 19, 24, 27, 32, 39 | lelttrd 11063 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − 𝐶)) < (2 · 𝐴)) |
41 | 40 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → (abs‘(𝐵 − 𝐶)) < (2 · 𝐴)) |
42 | | 2nn 11976 |
. . . . . 6
⊢ 2 ∈
ℕ |
43 | | simpl1 1189 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐴 ∈ ℕ) |
44 | | nnmulcl 11927 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ) → (2 · 𝐴) ∈ ℕ) |
45 | 42, 43, 44 | sylancr 586 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → (2 · 𝐴) ∈ ℕ) |
46 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐵 ∈ (0...𝐴)) |
47 | 46 | elfzelzd 13186 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐵 ∈ ℤ) |
48 | | simpl3 1191 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐶 ∈ (0...𝐴)) |
49 | 48 | elfzelzd 13186 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐶 ∈ ℤ) |
50 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → (2 · 𝐴) ∥ (𝐵 − 𝐶)) |
51 | | congabseq 40712 |
. . . . 5
⊢ ((((2
· 𝐴) ∈ ℕ
∧ 𝐵 ∈ ℤ
∧ 𝐶 ∈ ℤ)
∧ (2 · 𝐴)
∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶)) |
52 | 45, 47, 49, 50, 51 | syl31anc 1371 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → ((abs‘(𝐵 − 𝐶)) < (2 · 𝐴) ↔ 𝐵 = 𝐶)) |
53 | 41, 52 | mpbid 231 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − 𝐶)) → 𝐵 = 𝐶) |
54 | | simpll2 1211 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ (0...𝐴)) |
55 | | elfzle1 13188 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (0...𝐴) → 0 ≤ 𝐵) |
56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐵) |
57 | 7 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ) |
58 | 16 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ) |
59 | 58 | renegcld 11332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℝ) |
60 | 57, 59 | resubcld 11333 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℝ) |
61 | 60 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) ∈ ℂ) |
62 | 61 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (abs‘(𝐵 − -𝐶)) ∈ ℝ) |
63 | 62 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ∈ ℝ) |
64 | | 1re 10906 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
65 | | resubcl 11215 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐴 −
1) ∈ ℝ) |
66 | 21, 64, 65 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℝ) |
67 | 66 | renegcld 11332 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -(𝐴 − 1) ∈ ℝ) |
68 | 21, 67 | resubcld 11333 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) ∈
ℝ) |
69 | 68 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) ∈
ℝ) |
70 | 27 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈
ℝ) |
71 | 7 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℤ) |
72 | 71 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 ∈ ℂ) |
73 | 16 | znegcld 12357 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → -𝐶 ∈ ℤ) |
74 | 73 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℤ) |
75 | 74 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ ℂ) |
76 | 72, 75 | abssubd 15093 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) = (abs‘(-𝐶 − 𝐵))) |
77 | | 0zd 12261 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ∈
ℤ) |
78 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ (0...(𝐴 − 1))) |
79 | | 0zd 12261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ) |
80 | | 1z 12280 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℤ |
81 | | zsubcl 12292 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 1 ∈
ℤ) → (𝐴 −
1) ∈ ℤ) |
82 | 3, 80, 81 | sylancl 585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℤ) |
83 | | fzneg 40720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝐴 − 1)
∈ ℤ) → (𝐶
∈ (0...(𝐴 − 1))
↔ -𝐶 ∈ (-(𝐴 −
1)...-0))) |
84 | 16, 79, 82, 83 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0))) |
85 | 84 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ∈ (0...(𝐴 − 1)) ↔ -𝐶 ∈ (-(𝐴 − 1)...-0))) |
86 | 78, 85 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...-0)) |
87 | | neg0 11197 |
. . . . . . . . . . . . . . . . 17
⊢ -0 =
0 |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -0 =
0) |
89 | 88 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (-(𝐴 − 1)...-0) = (-(𝐴 − 1)...0)) |
90 | 86, 89 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 ∈ (-(𝐴 − 1)...0)) |
91 | 3 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐴 ∈ ℤ) |
92 | | simp1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ) |
93 | 42, 92, 44 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (2 · 𝐴) ∈ ℕ) |
94 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
· 𝐴) ∈ ℕ
→ ((2 · 𝐴)
− 1) ∈ ℕ0) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) ∈
ℕ0) |
96 | 95 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ ((2 · 𝐴) − 1)) |
97 | | 0m0e0 12023 |
. . . . . . . . . . . . . . . . 17
⊢ (0
− 0) = 0 |
98 | 97 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) =
0) |
99 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 1 ∈ ℂ) |
100 | 36, 36, 99 | addsubassd 11282 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) − 1) = (𝐴 + (𝐴 − 1))) |
101 | 38 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) = ((𝐴 + 𝐴) − 1)) |
102 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
103 | | subcl 11150 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
104 | 36, 102, 103 | sylancl 585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 1) ∈ ℂ) |
105 | 36, 104 | subnegd 11269 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = (𝐴 + (𝐴 − 1))) |
106 | 100, 101,
105 | 3eqtr4rd 2789 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) = ((2 · 𝐴) − 1)) |
107 | 96, 98, 106 | 3brtr4d 5102 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (0 − 0) ≤ (𝐴 − -(𝐴 − 1))) |
108 | 107 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (0 − 0) ≤
(𝐴 − -(𝐴 − 1))) |
109 | | fzmaxdif 40719 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ ℤ ∧ -𝐶
∈ (-(𝐴 −
1)...0)) ∧ (𝐴 ∈
ℤ ∧ 𝐵 ∈
(0...𝐴)) ∧ (0 −
0) ≤ (𝐴 − -(𝐴 − 1))) →
(abs‘(-𝐶 −
𝐵)) ≤ (𝐴 − -(𝐴 − 1))) |
110 | 77, 90, 91, 54, 108, 109 | syl221anc 1379 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(-𝐶 − 𝐵)) ≤ (𝐴 − -(𝐴 − 1))) |
111 | 76, 110 | eqbrtrd 5092 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) ≤ (𝐴 − -(𝐴 − 1))) |
112 | 27 | ltm1d 11837 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) − 1) < (2 · 𝐴)) |
113 | 106, 112 | eqbrtrd 5092 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴)) |
114 | 113 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐴 − -(𝐴 − 1)) < (2 · 𝐴)) |
115 | 63, 69, 70, 111, 114 | lelttrd 11063 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (abs‘(𝐵 − -𝐶)) < (2 · 𝐴)) |
116 | 93 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∈
ℕ) |
117 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (2 · 𝐴) ∥ (𝐵 − -𝐶)) |
118 | | congabseq 40712 |
. . . . . . . . . . . 12
⊢ ((((2
· 𝐴) ∈ ℕ
∧ 𝐵 ∈ ℤ
∧ -𝐶 ∈ ℤ)
∧ (2 · 𝐴)
∥ (𝐵 − -𝐶)) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶)) |
119 | 116, 71, 74, 117, 118 | syl31anc 1371 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → ((abs‘(𝐵 − -𝐶)) < (2 · 𝐴) ↔ 𝐵 = -𝐶)) |
120 | 115, 119 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = -𝐶) |
121 | 56, 120 | breqtrd 5096 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ -𝐶) |
122 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℤ) |
123 | 122 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (0...(𝐴 − 1)) → 𝐶 ∈ ℝ) |
124 | 123 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ∈ ℝ) |
125 | 124 | le0neg1d 11476 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 ≤ 0 ↔ 0 ≤ -𝐶)) |
126 | 121, 125 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 ≤ 0) |
127 | | elfzle1 13188 |
. . . . . . . . 9
⊢ (𝐶 ∈ (0...(𝐴 − 1)) → 0 ≤ 𝐶) |
128 | 127 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 0 ≤ 𝐶) |
129 | | letri3 10991 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐶 = 0
↔ (𝐶 ≤ 0 ∧ 0
≤ 𝐶))) |
130 | 124, 22, 129 | sylancl 585 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → (𝐶 = 0 ↔ (𝐶 ≤ 0 ∧ 0 ≤ 𝐶))) |
131 | 126, 128,
130 | mpbir2and 709 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐶 = 0) |
132 | 131 | negeqd 11145 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = -0) |
133 | 132, 88 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → -𝐶 = 0) |
134 | 133, 120,
131 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 ∈ (0...(𝐴 − 1))) → 𝐵 = 𝐶) |
135 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝐶 = 𝐴 → (𝐵 − 𝐶) = (𝐵 − 𝐴)) |
136 | 135 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 − 𝐶) = (𝐵 − 𝐴)) |
137 | 136 | fveq2d 6760 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵 − 𝐶)) = (abs‘(𝐵 − 𝐴))) |
138 | 40 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵 − 𝐶)) < (2 · 𝐴)) |
139 | 137, 138 | eqbrtrrd 5094 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (abs‘(𝐵 − 𝐴)) < (2 · 𝐴)) |
140 | 93 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℕ) |
141 | 7 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℤ) |
142 | 3 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℤ) |
143 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵 − -𝐶)) |
144 | 7 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ) |
145 | 36, 36, 144 | ppncand 11302 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵 − 𝐴)) = (𝐴 + 𝐵)) |
146 | 36, 144 | addcomd 11107 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
147 | 145, 146 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 + 𝐴) + (𝐵 − 𝐴)) = (𝐵 + 𝐴)) |
148 | 147 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵 − 𝐴)) = (𝐵 + 𝐴)) |
149 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝐶 = 𝐴 → (𝐵 + 𝐶) = (𝐵 + 𝐴)) |
150 | 149 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 + 𝐶) = (𝐵 + 𝐴)) |
151 | 148, 150 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((𝐴 + 𝐴) + (𝐵 − 𝐴)) = (𝐵 + 𝐶)) |
152 | 38 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → ((2 · 𝐴) + (𝐵 − 𝐴)) = ((𝐴 + 𝐴) + (𝐵 − 𝐴))) |
153 | 152 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵 − 𝐴)) = ((𝐴 + 𝐴) + (𝐵 − 𝐴))) |
154 | 16 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℂ) |
155 | 144, 154 | subnegd 11269 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − -𝐶) = (𝐵 + 𝐶)) |
156 | 155 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 − -𝐶) = (𝐵 + 𝐶)) |
157 | 151, 153,
156 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) + (𝐵 − 𝐴)) = (𝐵 − -𝐶)) |
158 | 143, 157 | breqtrrd 5098 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵 − 𝐴))) |
159 | 5 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∈ ℤ) |
160 | 7, 3 | zsubcld 12360 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 𝐴) ∈ ℤ) |
161 | 160 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (𝐵 − 𝐴) ∈ ℤ) |
162 | | dvdsadd 15939 |
. . . . . . . . 9
⊢ (((2
· 𝐴) ∈ ℤ
∧ (𝐵 − 𝐴) ∈ ℤ) → ((2
· 𝐴) ∥ (𝐵 − 𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵 − 𝐴)))) |
163 | 159, 161,
162 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((2 · 𝐴) ∥ (𝐵 − 𝐴) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝐵 − 𝐴)))) |
164 | 158, 163 | mpbird 256 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → (2 · 𝐴) ∥ (𝐵 − 𝐴)) |
165 | | congabseq 40712 |
. . . . . . 7
⊢ ((((2
· 𝐴) ∈ ℕ
∧ 𝐵 ∈ ℤ
∧ 𝐴 ∈ ℤ)
∧ (2 · 𝐴)
∥ (𝐵 − 𝐴)) → ((abs‘(𝐵 − 𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴)) |
166 | 140, 141,
142, 164, 165 | syl31anc 1371 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → ((abs‘(𝐵 − 𝐴)) < (2 · 𝐴) ↔ 𝐵 = 𝐴)) |
167 | 139, 166 | mpbid 231 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐴) |
168 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴) |
169 | 167, 168 | eqtr4d 2781 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) ∧ 𝐶 = 𝐴) → 𝐵 = 𝐶) |
170 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
171 | 170 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈
ℕ0) |
172 | | nn0uz 12549 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
173 | 171, 172 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈
(ℤ≥‘0)) |
174 | | fzm1 13265 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘0) → (𝐶 ∈ (0...𝐴) ↔ (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴))) |
175 | 174 | biimpa 476 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘0) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴)) |
176 | 173, 29, 175 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴)) |
177 | 176 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → (𝐶 ∈ (0...(𝐴 − 1)) ∨ 𝐶 = 𝐴)) |
178 | 134, 169,
177 | mpjaodan 955 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ (2 · 𝐴) ∥ (𝐵 − -𝐶)) → 𝐵 = 𝐶) |
179 | 53, 178 | jaodan 954 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) ∧ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶))) → 𝐵 = 𝐶) |
180 | 14, 179 | impbida 797 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (0...𝐴) ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 = 𝐶 ↔ ((2 · 𝐴) ∥ (𝐵 − 𝐶) ∨ (2 · 𝐴) ∥ (𝐵 − -𝐶)))) |