MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisen Structured version   Visualization version   GIF version

Theorem lgseisen 26764
Description: Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
Assertion
Ref Expression
lgseisen (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄

Proof of Theorem lgseisen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
21eldifad 3925 . . . 4 (𝜑𝑄 ∈ ℙ)
3 prmz 16562 . . . 4 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
42, 3syl 17 . . 3 (𝜑𝑄 ∈ ℤ)
5 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsval3 26700 . . 3 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝑄 /L 𝑃) = ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
81gausslemma2dlem0a 26741 . . . . . . . 8 (𝜑𝑄 ∈ ℕ)
9 oddprm 16693 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
105, 9syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1110nnnn0d 12482 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
128, 11nnexpcld 14158 . . . . . . 7 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℕ)
1312nnred 12177 . . . . . 6 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℝ)
14 neg1rr 12277 . . . . . . . 8 -1 ∈ ℝ
1514a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
16 neg1ne0 12278 . . . . . . . 8 -1 ≠ 0
1716a1i 11 . . . . . . 7 (𝜑 → -1 ≠ 0)
18 fzfid 13888 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
198nnred 12177 . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℝ)
205gausslemma2dlem0a 26741 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2119, 20nndivred 12216 . . . . . . . . . . 11 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
2221adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
23 2re 12236 . . . . . . . . . . 11 2 ∈ ℝ
24 elfznn 13480 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
2524adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
2625nnred 12177 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
27 remulcl 11145 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
2823, 26, 27sylancr 587 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
2922, 28remulcld 11194 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
3029flcld 13713 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3118, 30fsumzcl 15631 . . . . . . 7 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
3215, 17, 31reexpclzd 14162 . . . . . 6 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ)
33 1re 11164 . . . . . . 7 1 ∈ ℝ
3433a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3520nnrpd 12964 . . . . . 6 (𝜑𝑃 ∈ ℝ+)
36 lgseisen.3 . . . . . . 7 (𝜑𝑃𝑄)
37 eqid 2731 . . . . . . 7 ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)
38 eqid 2731 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2)) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑((𝑄 · (2 · 𝑥)) mod 𝑃)) · ((𝑄 · (2 · 𝑥)) mod 𝑃)) mod 𝑃) / 2))
39 eqid 2731 . . . . . . 7 ((𝑄 · (2 · 𝑦)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃)
40 eqid 2731 . . . . . . 7 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
41 eqid 2731 . . . . . . 7 (mulGrp‘(ℤ/nℤ‘𝑃)) = (mulGrp‘(ℤ/nℤ‘𝑃))
42 eqid 2731 . . . . . . 7 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
435, 1, 36, 37, 38, 39, 40, 41, 42lgseisenlem4 26763 . . . . . 6 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
44 modadd1 13823 . . . . . 6 ((((𝑄↑((𝑃 − 1) / 2)) ∈ ℝ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
4513, 32, 34, 35, 43, 44syl221anc 1381 . . . . 5 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃))
46 peano2re 11337 . . . . . . 7 ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ)
4732, 46syl 17 . . . . . 6 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ)
48 df-neg 11397 . . . . . . . 8 -1 = (0 − 1)
49 neg1cn 12276 . . . . . . . . . . . . 13 -1 ∈ ℂ
50 absexpz 15202 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
5149, 16, 31, 50mp3an12i 1465 . . . . . . . . . . . 12 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
52 ax-1cn 11118 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
5352absnegi 15297 . . . . . . . . . . . . . . 15 (abs‘-1) = (abs‘1)
54 abs1 15194 . . . . . . . . . . . . . . 15 (abs‘1) = 1
5553, 54eqtri 2759 . . . . . . . . . . . . . 14 (abs‘-1) = 1
5655oveq1i 7372 . . . . . . . . . . . . 13 ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
57 1exp 14007 . . . . . . . . . . . . . 14 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
5831, 57syl 17 . . . . . . . . . . . . 13 (𝜑 → (1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
5956, 58eqtrid 2783 . . . . . . . . . . . 12 (𝜑 → ((abs‘-1)↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = 1)
6051, 59eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = 1)
61 1le1 11792 . . . . . . . . . . 11 1 ≤ 1
6260, 61eqbrtrdi 5149 . . . . . . . . . 10 (𝜑 → (abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1)
63 absle 15212 . . . . . . . . . . 11 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
6432, 33, 63sylancl 586 . . . . . . . . . 10 (𝜑 → ((abs‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ≤ 1 ↔ (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)))
6562, 64mpbid 231 . . . . . . . . 9 (𝜑 → (-1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1))
6665simpld 495 . . . . . . . 8 (𝜑 → -1 ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
6748, 66eqbrtrrid 5146 . . . . . . 7 (𝜑 → (0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
68 0red 11167 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
6968, 34, 32lesubaddd 11761 . . . . . . 7 (𝜑 → ((0 − 1) ≤ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ↔ 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1)))
7067, 69mpbid 231 . . . . . 6 (𝜑 → 0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
7120nnred 12177 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
72 peano2rem 11477 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
7371, 72syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℝ)
7465simprd 496 . . . . . . . 8 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ≤ 1)
75 df-2 12225 . . . . . . . . . 10 2 = (1 + 1)
7623a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
775eldifad 3925 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
78 prmuz2 16583 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
79 eluzle 12785 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
8077, 78, 793syl 18 . . . . . . . . . . 11 (𝜑 → 2 ≤ 𝑃)
81 eldifsni 4755 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
825, 81syl 17 . . . . . . . . . . 11 (𝜑𝑃 ≠ 2)
8376, 71, 80, 82leneltd 11318 . . . . . . . . . 10 (𝜑 → 2 < 𝑃)
8475, 83eqbrtrrid 5146 . . . . . . . . 9 (𝜑 → (1 + 1) < 𝑃)
8534, 34, 71ltaddsubd 11764 . . . . . . . . 9 (𝜑 → ((1 + 1) < 𝑃 ↔ 1 < (𝑃 − 1)))
8684, 85mpbid 231 . . . . . . . 8 (𝜑 → 1 < (𝑃 − 1))
8732, 34, 73, 74, 86lelttrd 11322 . . . . . . 7 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1))
8832, 34, 71ltaddsubd 11764 . . . . . . 7 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃 ↔ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) < (𝑃 − 1)))
8987, 88mpbird 256 . . . . . 6 (𝜑 → ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)
90 modid 13811 . . . . . 6 (((((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) ∧ ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) < 𝑃)) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9147, 35, 70, 89, 90syl22anc 837 . . . . 5 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9245, 91eqtrd 2771 . . . 4 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1))
9392oveq1d 7377 . . 3 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1))
9432recnd 11192 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
95 pncan 11416 . . . 4 (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ ∧ 1 ∈ ℂ) → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
9694, 52, 95sylancl 586 . . 3 (𝜑 → (((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 1) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
9793, 96eqtrd 2771 . 2 (𝜑 → ((((𝑄↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
987, 97eqtrd 2771 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3910  {csn 4591   class class class wbr 5110  cmpt 5193  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cle 11199  cmin 11394  -cneg 11395   / cdiv 11821  cn 12162  2c2 12217  cz 12508  cuz 12772  +crp 12924  ...cfz 13434  cfl 13705   mod cmo 13784  cexp 13977  abscabs 15131  Σcsu 15582  cprime 16558  mulGrpcmgp 19910  ℤRHomczrh 20937  ℤ/nczn 20940   /L clgs 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-xnn0 12495  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-sum 15583  df-dvds 16148  df-gcd 16386  df-prm 16559  df-phi 16649  df-pc 16720  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-0g 17337  df-gsum 17338  df-imas 17404  df-qus 17405  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-submnd 18616  df-grp 18765  df-minusg 18766  df-sbg 18767  df-mulg 18887  df-subg 18939  df-nsg 18940  df-eqg 18941  df-ghm 19020  df-cntz 19111  df-cmn 19578  df-abl 19579  df-mgp 19911  df-ur 19928  df-ring 19980  df-cring 19981  df-oppr 20063  df-dvdsr 20084  df-unit 20085  df-invr 20115  df-dvr 20126  df-rnghom 20162  df-nzr 20202  df-drng 20227  df-field 20228  df-subrg 20268  df-lmod 20380  df-lss 20450  df-lsp 20490  df-sra 20692  df-rgmod 20693  df-lidl 20694  df-rsp 20695  df-2idl 20761  df-rlreg 20790  df-domn 20791  df-idom 20792  df-cnfld 20834  df-zring 20907  df-zrh 20941  df-zn 20944  df-lgs 26680
This theorem is referenced by:  lgsquadlem2  26766
  Copyright terms: Public domain W3C validator