Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme25dN Structured version   Visualization version   GIF version

Theorem cdleme25dN 39222
Description: Transform cdleme25c 39221. (Contributed by NM, 19-Jan-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme24.b 𝐡 = (Baseβ€˜πΎ)
cdleme24.l ≀ = (leβ€˜πΎ)
cdleme24.j ∨ = (joinβ€˜πΎ)
cdleme24.m ∧ = (meetβ€˜πΎ)
cdleme24.a 𝐴 = (Atomsβ€˜πΎ)
cdleme24.h 𝐻 = (LHypβ€˜πΎ)
cdleme24.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme24.f 𝐹 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme24.n 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ π‘Š)))
Assertion
Ref Expression
cdleme25dN ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒ!𝑒 ∈ 𝐡 βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑒 = 𝑁))
Distinct variable groups:   𝑒,𝑠,𝐴   𝐡,𝑠,𝑒   𝐻,𝑠   ∨ ,𝑠,𝑒   𝐾,𝑠   ≀ ,𝑠,𝑒   ∧ ,𝑠,𝑒   𝑃,𝑠,𝑒   𝑄,𝑠,𝑒   𝑅,𝑠,𝑒   π‘Š,𝑠,𝑒   𝑒,𝑁   π‘ˆ,𝑠,𝑒
Allowed substitution hints:   𝐹(𝑒,𝑠)   𝐻(𝑒)   𝐾(𝑒)   𝑁(𝑠)

Proof of Theorem cdleme25dN
StepHypRef Expression
1 cdleme24.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdleme24.l . . 3 ≀ = (leβ€˜πΎ)
3 cdleme24.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdleme24.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdleme24.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdleme24.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdleme24.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdleme24.f . . 3 𝐹 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
9 cdleme24.n . . 3 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑠) ∧ π‘Š)))
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme25c 39221 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒ!𝑒 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝑁))
11 simp11l 1284 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
1211adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝐾 ∈ HL)
13 simp11r 1285 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ 𝐻)
1413adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ π‘Š ∈ 𝐻)
15 simp12l 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
1615adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝑃 ∈ 𝐴)
17 simp13l 1288 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
1817adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝑄 ∈ 𝐴)
19 simpl2l 1226 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝑅 ∈ 𝐴)
20 simpr 485 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝑠 ∈ 𝐴)
212, 3, 4, 5, 6, 7, 8, 9, 1cdleme22gb 39160 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴)) β†’ 𝑁 ∈ 𝐡)
2212, 14, 16, 18, 19, 20, 21syl222anc 1386 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ 𝑠 ∈ 𝐴) β†’ 𝑁 ∈ 𝐡)
2322ex 413 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑠 ∈ 𝐴 β†’ 𝑁 ∈ 𝐡))
2423a1dd 50 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑠 ∈ 𝐴 β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑁 ∈ 𝐡)))
2524ralrimiv 3145 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑁 ∈ 𝐡))
26 simp12 1204 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
27 simp13 1205 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
28 simp3l 1201 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑄)
292, 3, 5, 6cdlemb2 38907 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))
3011, 13, 26, 27, 28, 29syl221anc 1381 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))
31 reusv2 5401 . . 3 ((βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑁 ∈ 𝐡) ∧ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄))) β†’ (βˆƒ!𝑒 ∈ 𝐡 βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑒 = 𝑁) ↔ βˆƒ!𝑒 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝑁)))
3225, 30, 31syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (βˆƒ!𝑒 ∈ 𝐡 βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑒 = 𝑁) ↔ βˆƒ!𝑒 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝑁)))
3310, 32mpbird 256 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ βˆƒ!𝑒 ∈ 𝐡 βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑒 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  meetcmee 18264  Atomscatm 38128  HLchlt 38215  LHypclh 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator