MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modadd12d Structured version   Visualization version   GIF version

Theorem modadd12d 13950
Description: Additive property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
modadd12d.1 (𝜑𝐴 ∈ ℝ)
modadd12d.2 (𝜑𝐵 ∈ ℝ)
modadd12d.3 (𝜑𝐶 ∈ ℝ)
modadd12d.4 (𝜑𝐷 ∈ ℝ)
modadd12d.5 (𝜑𝐸 ∈ ℝ+)
modadd12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modadd12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modadd12d (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))

Proof of Theorem modadd12d
StepHypRef Expression
1 modadd12d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 modadd12d.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 modadd12d.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 modadd12d.5 . . 3 (𝜑𝐸 ∈ ℝ+)
5 modadd12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
6 modadd1 13930 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐶) mod 𝐸))
71, 2, 3, 4, 5, 6syl221anc 1383 . 2 (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐶) mod 𝐸))
82recnd 11268 . . . . 5 (𝜑𝐵 ∈ ℂ)
93recnd 11268 . . . . 5 (𝜑𝐶 ∈ ℂ)
108, 9addcomd 11442 . . . 4 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
1110oveq1d 7425 . . 3 (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐶 + 𝐵) mod 𝐸))
12 modadd12d.4 . . . 4 (𝜑𝐷 ∈ ℝ)
13 modadd12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
14 modadd1 13930 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 + 𝐵) mod 𝐸) = ((𝐷 + 𝐵) mod 𝐸))
153, 12, 2, 4, 13, 14syl221anc 1383 . . 3 (𝜑 → ((𝐶 + 𝐵) mod 𝐸) = ((𝐷 + 𝐵) mod 𝐸))
1612recnd 11268 . . . . 5 (𝜑𝐷 ∈ ℂ)
1716, 8addcomd 11442 . . . 4 (𝜑 → (𝐷 + 𝐵) = (𝐵 + 𝐷))
1817oveq1d 7425 . . 3 (𝜑 → ((𝐷 + 𝐵) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
1911, 15, 183eqtrd 2775 . 2 (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
207, 19eqtrd 2771 1 (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7410  cr 11133   + caddc 11137  +crp 13013   mod cmo 13891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-mod 13892
This theorem is referenced by:  modsub12d  13951  sadasslem  16494
  Copyright terms: Public domain W3C validator