![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzm1ne1 | Structured version Visualization version GIF version |
Description: Elementhood of an integer and its predecessor in finite intervals of integers. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
Ref | Expression |
---|---|
fzm1ne1 | ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzne1 32504 | . . 3 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ((𝑀 + 1)...𝑁)) | |
2 | elfzel1 13503 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ∈ ℤ) | |
3 | elfzel2 13502 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ ℤ) | |
4 | elfzelz 13504 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ) | |
5 | 1zzd 12594 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 1 ∈ ℤ) | |
6 | id 22 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ((𝑀 + 1)...𝑁)) | |
7 | fzsubel 13540 | . . . . 5 ⊢ ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ ((𝑀 + 1)...𝑁) ↔ (𝐾 − 1) ∈ (((𝑀 + 1) − 1)...(𝑁 − 1)))) | |
8 | 7 | biimp3a 1465 | . . . 4 ⊢ ((((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐾 − 1) ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))) |
9 | 2, 3, 4, 5, 6, 8 | syl221anc 1378 | . . 3 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → (𝐾 − 1) ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))) |
10 | 1, 9 | syl 17 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))) |
11 | elfzel1 13503 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℤ) |
13 | 12 | zcnd 12668 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℂ) |
14 | 1cnd 11210 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 1 ∈ ℂ) | |
15 | 13, 14 | pncand 11573 | . . 3 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → ((𝑀 + 1) − 1) = 𝑀) |
16 | 15 | oveq1d 7419 | . 2 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1))) |
17 | 10, 16 | eleqtrd 2829 | 1 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ≠ wne 2934 (class class class)co 7404 1c1 11110 + caddc 11112 − cmin 11445 ℤcz 12559 ...cfz 13487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |