MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcxp Structured version   Visualization version   GIF version

Theorem divcxp 26602
Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
divcxp (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))

Proof of Theorem divcxp
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐴 ∈ ℝ)
2 simp1r 1199 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 0 ≤ 𝐴)
3 simp2 1137 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ∈ ℝ+)
43rpreccld 13011 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (1 / 𝐵) ∈ ℝ+)
54rpred 13001 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (1 / 𝐵) ∈ ℝ)
64rpge0d 13005 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 0 ≤ (1 / 𝐵))
7 simp3 1138 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
8 mulcxp 26600 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)) ∧ 𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)))
91, 2, 5, 6, 7, 8syl221anc 1383 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)))
10 cxprec 26601 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((1 / 𝐵)↑𝑐𝐶) = (1 / (𝐵𝑐𝐶)))
113, 7, 10syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((1 / 𝐵)↑𝑐𝐶) = (1 / (𝐵𝑐𝐶)))
1211oveq2d 7405 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
139, 12eqtrd 2765 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
141recnd 11208 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
153rpcnd 13003 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
163rpne0d 13006 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ≠ 0)
1714, 15, 16divrecd 11967 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1817oveq1d 7404 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴 · (1 / 𝐵))↑𝑐𝐶))
19 cxpcl 26589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) ∈ ℂ)
2014, 7, 19syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) ∈ ℂ)
21 cxpcl 26589 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
2215, 7, 21syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
23 cxpne0 26592 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ≠ 0)
2415, 16, 7, 23syl3anc 1373 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ≠ 0)
2520, 22, 24divrecd 11967 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
2613, 18, 253eqtr4d 2775 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5109  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   · cmul 11079  cle 11215   / cdiv 11841  +crp 12957  𝑐ccxp 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774  df-log 26471  df-cxp 26472
This theorem is referenced by:  divcxpd  26637  cxploglim2  26895
  Copyright terms: Public domain W3C validator