Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihordlem7b Structured version   Visualization version   GIF version

Theorem dihordlem7b 41233
Description: Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dihordlem8.b 𝐵 = (Base‘𝐾)
dihordlem8.l = (le‘𝐾)
dihordlem8.a 𝐴 = (Atoms‘𝐾)
dihordlem8.h 𝐻 = (LHyp‘𝐾)
dihordlem8.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihordlem8.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dihordlem8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihordlem8.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihordlem8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihordlem8.s + = (+g𝑈)
dihordlem8.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
dihordlem7b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑓 = 𝑔𝑂 = 𝑠))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝐵(𝑓,𝑔,𝑠)   𝑃(𝑓,𝑔,𝑠)   + (𝑓,𝑔,,𝑠)   𝑄(𝑓,𝑔,,𝑠)   𝑅(𝑓,𝑔,𝑠)   𝑇(𝑓,𝑔,𝑠)   𝑈(𝑓,𝑔,,𝑠)   𝐸(𝑓,𝑔,,𝑠)   𝐺(𝑓,𝑔,,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝐾(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑂(𝑓,𝑔,,𝑠)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dihordlem7b
StepHypRef Expression
1 dihordlem8.b . . . . 5 𝐵 = (Base‘𝐾)
2 dihordlem8.l . . . . 5 = (le‘𝐾)
3 dihordlem8.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 dihordlem8.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dihordlem8.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
6 dihordlem8.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
7 dihordlem8.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dihordlem8.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 dihordlem8.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihordlem8.s . . . . 5 + = (+g𝑈)
11 dihordlem8.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihordlem7 41232 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑓 = ((𝑠𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠))
1312simpld 494 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑓 = ((𝑠𝐺) ∘ 𝑔))
1412simprd 495 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑂 = 𝑠)
1514fveq1d 6819 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑂𝐺) = (𝑠𝐺))
16 simp1 1136 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
172, 3, 4, 5lhpocnel2 40037 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
18173ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
19 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
202, 3, 4, 7, 11ltrniotacl 40597 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
2116, 18, 19, 20syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝐺𝑇)
226, 1tendo02 40805 . . . . . 6 (𝐺𝑇 → (𝑂𝐺) = ( I ↾ 𝐵))
2321, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑂𝐺) = ( I ↾ 𝐵))
2415, 23eqtr3d 2767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑠𝐺) = ( I ↾ 𝐵))
2524coeq1d 5799 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → ((𝑠𝐺) ∘ 𝑔) = (( I ↾ 𝐵) ∘ 𝑔))
26 simp32 1211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑔𝑇)
271, 4, 7ltrn1o 40142 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → 𝑔:𝐵1-1-onto𝐵)
2816, 26, 27syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑔:𝐵1-1-onto𝐵)
29 f1of 6759 . . . 4 (𝑔:𝐵1-1-onto𝐵𝑔:𝐵𝐵)
30 fcoi2 6694 . . . 4 (𝑔:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑔) = 𝑔)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (( I ↾ 𝐵) ∘ 𝑔) = 𝑔)
3213, 25, 313eqtrd 2769 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → 𝑓 = 𝑔)
3332, 14jca 511 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑠𝐸𝑔𝑇 ∧ ⟨𝑓, 𝑂⟩ = (⟨(𝑠𝐺), 𝑠+𝑔, 𝑂⟩))) → (𝑓 = 𝑔𝑂 = 𝑠))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  cop 4580   class class class wbr 5089  cmpt 5170   I cid 5508  cres 5616  ccom 5618  wf 6473  1-1-ontowf1o 6476  cfv 6477  crio 7297  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  lecple 17160  occoc 17161  Atomscatm 39281  HLchlt 39368  LHypclh 40002  LTrncltrn 40119  TEndoctendo 40770  DVecHcdvh 41096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18330  df-clat 18397  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39516  df-lplanes 39517  df-lvols 39518  df-lines 39519  df-psubsp 39521  df-pmap 39522  df-padd 39814  df-lhyp 40006  df-laut 40007  df-ldil 40122  df-ltrn 40123  df-trl 40177  df-tendo 40773  df-edring 40775  df-dvech 41097
This theorem is referenced by:  dihord10  41241
  Copyright terms: Public domain W3C validator