| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0tp | Structured version Visualization version GIF version | ||
| Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| tendo0tp.l | ⊢ ≤ = (le‘𝐾) |
| tendo0tp.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendo0tp | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑂‘𝐹)) ≤ (𝑅‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendo0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 2 | tendo0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | 1, 2 | tendo02 40769 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| 5 | 4 | fveq2d 6830 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑂‘𝐹)) = (𝑅‘( I ↾ 𝐵))) |
| 6 | eqid 2729 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | tendo0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | tendo0tp.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 2, 6, 7, 8 | trlid0 40158 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 11 | 5, 10 | eqtrd 2764 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑂‘𝐹)) = (0.‘𝐾)) |
| 12 | hlop 39343 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
| 14 | tendo0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 15 | 2, 7, 14, 8 | trlcl 40146 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| 16 | tendo0tp.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 17 | 2, 16, 6 | op0le 39167 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (𝑅‘𝐹) ∈ 𝐵) → (0.‘𝐾) ≤ (𝑅‘𝐹)) |
| 18 | 13, 15, 17 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (0.‘𝐾) ≤ (𝑅‘𝐹)) |
| 19 | 11, 18 | eqbrtrd 5117 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑂‘𝐹)) ≤ (𝑅‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ↦ cmpt 5176 I cid 5517 ↾ cres 5625 ‘cfv 6486 Basecbs 17138 lecple 17186 0.cp0 18345 OPcops 39153 HLchlt 39331 LHypclh 39966 LTrncltrn 40083 trLctrl 40140 TEndoctendo 40734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 |
| This theorem is referenced by: tendo0cl 40772 |
| Copyright terms: Public domain | W3C validator |