Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0tp Structured version   Visualization version   GIF version

Theorem tendo0tp 39655
Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐡 = (Baseβ€˜πΎ)
tendo0.h 𝐻 = (LHypβ€˜πΎ)
tendo0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendo0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendo0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
tendo0tp.l ≀ = (leβ€˜πΎ)
tendo0tp.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
tendo0tp (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜(π‘‚β€˜πΉ)) ≀ (π‘…β€˜πΉ))
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   ≀ (𝑓)   𝑂(𝑓)   π‘Š(𝑓)

Proof of Theorem tendo0tp
StepHypRef Expression
1 tendo0.o . . . . . 6 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
2 tendo0.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
31, 2tendo02 39653 . . . . 5 (𝐹 ∈ 𝑇 β†’ (π‘‚β€˜πΉ) = ( I β†Ύ 𝐡))
43adantl 482 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘‚β€˜πΉ) = ( I β†Ύ 𝐡))
54fveq2d 6895 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜(π‘‚β€˜πΉ)) = (π‘…β€˜( I β†Ύ 𝐡)))
6 eqid 2732 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
7 tendo0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
8 tendo0tp.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
92, 6, 7, 8trlid0 39042 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (π‘…β€˜( I β†Ύ 𝐡)) = (0.β€˜πΎ))
109adantr 481 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜( I β†Ύ 𝐡)) = (0.β€˜πΎ))
115, 10eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜(π‘‚β€˜πΉ)) = (0.β€˜πΎ))
12 hlop 38227 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
1312ad2antrr 724 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐾 ∈ OP)
14 tendo0.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
152, 7, 14, 8trlcl 39030 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ 𝐡)
16 tendo0tp.l . . . 4 ≀ = (leβ€˜πΎ)
172, 16, 6op0le 38051 . . 3 ((𝐾 ∈ OP ∧ (π‘…β€˜πΉ) ∈ 𝐡) β†’ (0.β€˜πΎ) ≀ (π‘…β€˜πΉ))
1813, 15, 17syl2anc 584 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (0.β€˜πΎ) ≀ (π‘…β€˜πΉ))
1911, 18eqbrtrd 5170 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜(π‘‚β€˜πΉ)) ≀ (π‘…β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17143  lecple 17203  0.cp0 18375  OPcops 38037  HLchlt 38215  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  TEndoctendo 39618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025
This theorem is referenced by:  tendo0cl  39656
  Copyright terms: Public domain W3C validator