Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0tp Structured version   Visualization version   GIF version

Theorem tendo0tp 40828
Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0tp.l = (le‘𝐾)
tendo0tp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo0tp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0tp
StepHypRef Expression
1 tendo0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 tendo0.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2tendo02 40826 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
43adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑂𝐹) = ( I ↾ 𝐵))
54fveq2d 6821 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (𝑅‘( I ↾ 𝐵)))
6 eqid 2731 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 tendo0tp.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
92, 6, 7, 8trlid0 40215 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
109adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
115, 10eqtrd 2766 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (0.‘𝐾))
12 hlop 39401 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
1312ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
14 tendo0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
152, 7, 14, 8trlcl 40203 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
16 tendo0tp.l . . . 4 = (le‘𝐾)
172, 16, 6op0le 39225 . . 3 ((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐹))
1813, 15, 17syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (0.‘𝐾) (𝑅𝐹))
1911, 18eqbrtrd 5108 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  cmpt 5167   I cid 5505  cres 5613  cfv 6476  Basecbs 17115  lecple 17163  0.cp0 18322  OPcops 39211  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  trLctrl 40197  TEndoctendo 40791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198
This theorem is referenced by:  tendo0cl  40829
  Copyright terms: Public domain W3C validator