Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0tp Structured version   Visualization version   GIF version

Theorem tendo0tp 40961
Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0tp.l = (le‘𝐾)
tendo0tp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo0tp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0tp
StepHypRef Expression
1 tendo0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 tendo0.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2tendo02 40959 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
43adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑂𝐹) = ( I ↾ 𝐵))
54fveq2d 6835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (𝑅‘( I ↾ 𝐵)))
6 eqid 2733 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 tendo0tp.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
92, 6, 7, 8trlid0 40348 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
109adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
115, 10eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (0.‘𝐾))
12 hlop 39534 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
1312ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
14 tendo0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
152, 7, 14, 8trlcl 40336 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
16 tendo0tp.l . . . 4 = (le‘𝐾)
172, 16, 6op0le 39358 . . 3 ((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐹))
1813, 15, 17syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (0.‘𝐾) (𝑅𝐹))
1911, 18eqbrtrd 5117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cmpt 5176   I cid 5515  cres 5623  cfv 6489  Basecbs 17127  lecple 17175  0.cp0 18335  OPcops 39344  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330  TEndoctendo 40924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331
This theorem is referenced by:  tendo0cl  40962
  Copyright terms: Public domain W3C validator