Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0tp Structured version   Visualization version   GIF version

Theorem tendo0tp 40813
Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0tp.l = (le‘𝐾)
tendo0tp.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
tendo0tp (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0tp
StepHypRef Expression
1 tendo0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 tendo0.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2tendo02 40811 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
43adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑂𝐹) = ( I ↾ 𝐵))
54fveq2d 6885 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (𝑅‘( I ↾ 𝐵)))
6 eqid 2736 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 tendo0tp.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
92, 6, 7, 8trlid0 40200 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
109adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
115, 10eqtrd 2771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) = (0.‘𝐾))
12 hlop 39385 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
1312ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
14 tendo0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
152, 7, 14, 8trlcl 40188 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
16 tendo0tp.l . . . 4 = (le‘𝐾)
172, 16, 6op0le 39209 . . 3 ((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ 𝐵) → (0.‘𝐾) (𝑅𝐹))
1813, 15, 17syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (0.‘𝐾) (𝑅𝐹))
1911, 18eqbrtrd 5146 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cmpt 5206   I cid 5552  cres 5661  cfv 6536  Basecbs 17233  lecple 17283  0.cp0 18438  OPcops 39195  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182  TEndoctendo 40776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183
This theorem is referenced by:  tendo0cl  40814
  Copyright terms: Public domain W3C validator