| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0mulr | Structured version Visualization version GIF version | ||
| Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo0mulr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ 𝑂) = 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoid0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tendoid0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoid0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | cdlemftr0 40592 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 6 | simpll 766 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | simplr 768 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑈 ∈ 𝐸) | |
| 8 | tendoid0.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 9 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 10 | 1, 2, 3, 8, 9 | tendo0cl 40814 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 11 | 10 | ad2antrr 726 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑂 ∈ 𝐸) |
| 12 | 2, 8 | tendococl 40796 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) → (𝑈 ∘ 𝑂) ∈ 𝐸) |
| 13 | 6, 7, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) ∈ 𝐸) |
| 14 | 9, 1 | tendo02 40811 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 15 | 14 | ad2antrl 728 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 16 | 15 | fveq2d 6885 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂‘𝑔)) = (𝑈‘( I ↾ 𝐵))) |
| 17 | 1, 2, 8 | tendoid 40797 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 19 | 16, 18 | eqtrd 2771 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂‘𝑔)) = ( I ↾ 𝐵)) |
| 20 | simprl 770 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑔 ∈ 𝑇) | |
| 21 | 2, 3, 8 | tendocoval 40790 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑈‘(𝑂‘𝑔))) |
| 22 | 6, 7, 11, 20, 21 | syl121anc 1377 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑈‘(𝑂‘𝑔))) |
| 23 | 19, 22, 15 | 3eqtr4d 2781 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑂‘𝑔)) |
| 24 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) | |
| 25 | 1, 2, 3, 8 | tendocan 40848 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈 ∘ 𝑂) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ((𝑈 ∘ 𝑂)‘𝑔) = (𝑂‘𝑔)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) = 𝑂) |
| 26 | 6, 13, 11, 23, 24, 25 | syl131anc 1385 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) = 𝑂) |
| 27 | 5, 26 | rexlimddv 3148 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ 𝑂) = 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ↦ cmpt 5206 I cid 5552 ↾ cres 5661 ∘ ccom 5663 ‘cfv 6536 Basecbs 17233 HLchlt 39373 LHypclh 40008 LTrncltrn 40125 TEndoctendo 40776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-undef 8277 df-map 8847 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tendo 40779 |
| This theorem is referenced by: dib1dim2 41192 diblss 41194 |
| Copyright terms: Public domain | W3C validator |