Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0mulr Structured version   Visualization version   GIF version

Theorem tendo0mulr 39698
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
tendoid0.b 𝐡 = (Baseβ€˜πΎ)
tendoid0.h 𝐻 = (LHypβ€˜πΎ)
tendoid0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoid0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendoid0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
tendo0mulr (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘ˆ ∘ 𝑂) = 𝑂)
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓
Allowed substitution hints:   π‘ˆ(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   π‘Š(𝑓)

Proof of Theorem tendo0mulr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 tendoid0.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 tendoid0.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
41, 2, 3cdlemftr0 39439 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘” ∈ 𝑇 𝑔 β‰  ( I β†Ύ 𝐡))
54adantr 482 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ βˆƒπ‘” ∈ 𝑇 𝑔 β‰  ( I β†Ύ 𝐡))
6 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simplr 768 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ π‘ˆ ∈ 𝐸)
8 tendoid0.e . . . . . 6 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
9 tendoid0.o . . . . . 6 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
101, 2, 3, 8, 9tendo0cl 39661 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
1110ad2antrr 725 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑂 ∈ 𝐸)
122, 8tendococl 39643 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) β†’ (π‘ˆ ∘ 𝑂) ∈ 𝐸)
136, 7, 11, 12syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑂) ∈ 𝐸)
149, 1tendo02 39658 . . . . . . 7 (𝑔 ∈ 𝑇 β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
1514ad2antrl 727 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
1615fveq2d 6896 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜(π‘‚β€˜π‘”)) = (π‘ˆβ€˜( I β†Ύ 𝐡)))
171, 2, 8tendoid 39644 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘ˆβ€˜( I β†Ύ 𝐡)) = ( I β†Ύ 𝐡))
1817adantr 482 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜( I β†Ύ 𝐡)) = ( I β†Ύ 𝐡))
1916, 18eqtrd 2773 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜(π‘‚β€˜π‘”)) = ( I β†Ύ 𝐡))
20 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ 𝑔 ∈ 𝑇)
212, 3, 8tendocoval 39637 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘ˆ ∘ 𝑂)β€˜π‘”) = (π‘ˆβ€˜(π‘‚β€˜π‘”)))
226, 7, 11, 20, 21syl121anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆ ∘ 𝑂)β€˜π‘”) = (π‘ˆβ€˜(π‘‚β€˜π‘”)))
2319, 22, 153eqtr4d 2783 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆ ∘ 𝑂)β€˜π‘”) = (π‘‚β€˜π‘”))
24 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))
251, 2, 3, 8tendocan 39695 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((π‘ˆ ∘ 𝑂) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ((π‘ˆ ∘ 𝑂)β€˜π‘”) = (π‘‚β€˜π‘”)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑂) = 𝑂)
266, 13, 11, 23, 24, 25syl131anc 1384 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ ∘ 𝑂) = 𝑂)
275, 26rexlimddv 3162 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸) β†’ (π‘ˆ ∘ 𝑂) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071   ↦ cmpt 5232   I cid 5574   β†Ύ cres 5679   ∘ ccom 5681  β€˜cfv 6544  Basecbs 17144  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  TEndoctendo 39623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-undef 8258  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030  df-tendo 39626
This theorem is referenced by:  dib1dim2  40039  diblss  40041
  Copyright terms: Public domain W3C validator