Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0mulr Structured version   Visualization version   GIF version

Theorem tendo0mulr 38841
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0mulr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0mulr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐵 = (Base‘𝐾)
2 tendoid0.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 38582 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
54adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
6 simpll 764 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simplr 766 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
8 tendoid0.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
101, 2, 3, 8, 9tendo0cl 38804 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1110ad2antrr 723 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑂𝐸)
122, 8tendococl 38786 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑂𝐸) → (𝑈𝑂) ∈ 𝐸)
136, 7, 11, 12syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) ∈ 𝐸)
149, 1tendo02 38801 . . . . . . 7 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
1514ad2antrl 725 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑂𝑔) = ( I ↾ 𝐵))
1615fveq2d 6778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂𝑔)) = (𝑈‘( I ↾ 𝐵)))
171, 2, 8tendoid 38787 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1817adantr 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1916, 18eqtrd 2778 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂𝑔)) = ( I ↾ 𝐵))
20 simprl 768 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑔𝑇)
212, 3, 8tendocoval 38780 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸) ∧ 𝑔𝑇) → ((𝑈𝑂)‘𝑔) = (𝑈‘(𝑂𝑔)))
226, 7, 11, 20, 21syl121anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑂)‘𝑔) = (𝑈‘(𝑂𝑔)))
2319, 22, 153eqtr4d 2788 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑂)‘𝑔) = (𝑂𝑔))
24 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)))
251, 2, 3, 8tendocan 38838 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑂) ∈ 𝐸𝑂𝐸 ∧ ((𝑈𝑂)‘𝑔) = (𝑂𝑔)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) = 𝑂)
266, 13, 11, 23, 24, 25syl131anc 1382 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) = 𝑂)
275, 26rexlimddv 3220 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cmpt 5157   I cid 5488  cres 5591  ccom 5593  cfv 6433  Basecbs 16912  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  dib1dim2  39182  diblss  39184
  Copyright terms: Public domain W3C validator