| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0mulr | Structured version Visualization version GIF version | ||
| Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo0mulr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ 𝑂) = 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoid0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tendoid0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoid0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | cdlemftr0 40607 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 6 | simpll 766 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | simplr 768 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑈 ∈ 𝐸) | |
| 8 | tendoid0.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 9 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 10 | 1, 2, 3, 8, 9 | tendo0cl 40829 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 11 | 10 | ad2antrr 726 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑂 ∈ 𝐸) |
| 12 | 2, 8 | tendococl 40811 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) → (𝑈 ∘ 𝑂) ∈ 𝐸) |
| 13 | 6, 7, 11, 12 | syl3anc 1373 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) ∈ 𝐸) |
| 14 | 9, 1 | tendo02 40826 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 15 | 14 | ad2antrl 728 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 16 | 15 | fveq2d 6821 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂‘𝑔)) = (𝑈‘( I ↾ 𝐵))) |
| 17 | 1, 2, 8 | tendoid 40812 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 19 | 16, 18 | eqtrd 2766 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂‘𝑔)) = ( I ↾ 𝐵)) |
| 20 | simprl 770 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑔 ∈ 𝑇) | |
| 21 | 2, 3, 8 | tendocoval 40805 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑈‘(𝑂‘𝑔))) |
| 22 | 6, 7, 11, 20, 21 | syl121anc 1377 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑈‘(𝑂‘𝑔))) |
| 23 | 19, 22, 15 | 3eqtr4d 2776 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈 ∘ 𝑂)‘𝑔) = (𝑂‘𝑔)) |
| 24 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) | |
| 25 | 1, 2, 3, 8 | tendocan 40863 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈 ∘ 𝑂) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ((𝑈 ∘ 𝑂)‘𝑔) = (𝑂‘𝑔)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) = 𝑂) |
| 26 | 6, 13, 11, 23, 24, 25 | syl131anc 1385 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈 ∘ 𝑂) = 𝑂) |
| 27 | 5, 26 | rexlimddv 3139 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ 𝑂) = 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ↦ cmpt 5167 I cid 5505 ↾ cres 5613 ∘ ccom 5615 ‘cfv 6476 Basecbs 17115 HLchlt 39389 LHypclh 40023 LTrncltrn 40140 TEndoctendo 40791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-riotaBAD 38992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-undef 8198 df-map 8747 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-p1 18325 df-lat 18333 df-clat 18400 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-llines 39537 df-lplanes 39538 df-lvols 39539 df-lines 39540 df-psubsp 39542 df-pmap 39543 df-padd 39835 df-lhyp 40027 df-laut 40028 df-ldil 40143 df-ltrn 40144 df-trl 40198 df-tendo 40794 |
| This theorem is referenced by: dib1dim2 41207 diblss 41209 |
| Copyright terms: Public domain | W3C validator |