Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0mulr Structured version   Visualization version   GIF version

Theorem tendo0mulr 40866
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0mulr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0mulr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4 𝐵 = (Base‘𝐾)
2 tendoid0.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 40607 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
54adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
6 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simplr 768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
8 tendoid0.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
9 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
101, 2, 3, 8, 9tendo0cl 40829 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1110ad2antrr 726 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑂𝐸)
122, 8tendococl 40811 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑂𝐸) → (𝑈𝑂) ∈ 𝐸)
136, 7, 11, 12syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) ∈ 𝐸)
149, 1tendo02 40826 . . . . . . 7 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
1514ad2antrl 728 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑂𝑔) = ( I ↾ 𝐵))
1615fveq2d 6821 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂𝑔)) = (𝑈‘( I ↾ 𝐵)))
171, 2, 8tendoid 40812 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1817adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1916, 18eqtrd 2766 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘(𝑂𝑔)) = ( I ↾ 𝐵))
20 simprl 770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → 𝑔𝑇)
212, 3, 8tendocoval 40805 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸) ∧ 𝑔𝑇) → ((𝑈𝑂)‘𝑔) = (𝑈‘(𝑂𝑔)))
226, 7, 11, 20, 21syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑂)‘𝑔) = (𝑈‘(𝑂𝑔)))
2319, 22, 153eqtr4d 2776 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → ((𝑈𝑂)‘𝑔) = (𝑂𝑔))
24 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)))
251, 2, 3, 8tendocan 40863 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑂) ∈ 𝐸𝑂𝐸 ∧ ((𝑈𝑂)‘𝑔) = (𝑂𝑔)) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) = 𝑂)
266, 13, 11, 23, 24, 25syl131anc 1385 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) ∧ (𝑔𝑇𝑔 ≠ ( I ↾ 𝐵))) → (𝑈𝑂) = 𝑂)
275, 26rexlimddv 3139 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cmpt 5167   I cid 5505  cres 5613  ccom 5615  cfv 6476  Basecbs 17115  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  TEndoctendo 40791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tendo 40794
This theorem is referenced by:  dib1dim2  41207  diblss  41209
  Copyright terms: Public domain W3C validator