![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1ne0 | Structured version Visualization version GIF version |
Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo1ne0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoid0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | tendoid0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendoid0.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | cdlemftr0 40173 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
5 | simp3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → 𝑔 ≠ ( I ↾ 𝐵)) | |
6 | fveq1 6895 | . . . . . . . 8 ⊢ (( I ↾ 𝑇) = 𝑂 → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) | |
7 | 6 | adantl 480 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) |
8 | simpl2 1189 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 ∈ 𝑇) | |
9 | fvresi 7182 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
11 | tendoid0.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
12 | 11, 1 | tendo02 40392 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
13 | 8, 12 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
14 | 7, 10, 13 | 3eqtr3d 2773 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 = ( I ↾ 𝐵)) |
15 | 14 | ex 411 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (( I ↾ 𝑇) = 𝑂 → 𝑔 = ( I ↾ 𝐵))) |
16 | 15 | necon3d 2950 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
17 | 5, 16 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → ( I ↾ 𝑇) ≠ 𝑂) |
18 | 17 | rexlimdv3a 3148 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
19 | 4, 18 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 ↦ cmpt 5232 I cid 5575 ↾ cres 5680 ‘cfv 6549 Basecbs 17188 HLchlt 38954 LHypclh 39589 LTrncltrn 39706 TEndoctendo 40357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38557 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18295 df-poset 18313 df-plt 18330 df-lub 18346 df-glb 18347 df-join 18348 df-meet 18349 df-p0 18425 df-p1 18426 df-lat 18432 df-clat 18499 df-oposet 38780 df-ol 38782 df-oml 38783 df-covers 38870 df-ats 38871 df-atl 38902 df-cvlat 38926 df-hlat 38955 df-llines 39103 df-lplanes 39104 df-lvols 39105 df-lines 39106 df-psubsp 39108 df-pmap 39109 df-padd 39401 df-lhyp 39593 df-laut 39594 df-ldil 39709 df-ltrn 39710 df-trl 39764 |
This theorem is referenced by: cdleml9 40589 erngdvlem4 40596 erng1r 40600 erngdvlem4-rN 40604 dvalveclem 40630 dvheveccl 40717 dihord6apre 40861 dihatlat 40939 |
Copyright terms: Public domain | W3C validator |