| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1ne0 | Structured version Visualization version GIF version | ||
| Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.) |
| Ref | Expression |
|---|---|
| tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo1ne0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoid0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tendoid0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoid0.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | cdlemftr0 40615 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 5 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → 𝑔 ≠ ( I ↾ 𝐵)) | |
| 6 | fveq1 6821 | . . . . . . . 8 ⊢ (( I ↾ 𝑇) = 𝑂 → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) |
| 8 | simpl2 1193 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 ∈ 𝑇) | |
| 9 | fvresi 7107 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
| 11 | tendoid0.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 12 | 11, 1 | tendo02 40834 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 13 | 8, 12 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 14 | 7, 10, 13 | 3eqtr3d 2774 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 = ( I ↾ 𝐵)) |
| 15 | 14 | ex 412 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (( I ↾ 𝑇) = 𝑂 → 𝑔 = ( I ↾ 𝐵))) |
| 16 | 15 | necon3d 2949 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
| 17 | 5, 16 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → ( I ↾ 𝑇) ≠ 𝑂) |
| 18 | 17 | rexlimdv3a 3137 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
| 19 | 4, 18 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ↦ cmpt 5170 I cid 5508 ↾ cres 5616 ‘cfv 6481 Basecbs 17120 HLchlt 39397 LHypclh 40031 LTrncltrn 40148 TEndoctendo 40799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-llines 39545 df-lplanes 39546 df-lvols 39547 df-lines 39548 df-psubsp 39550 df-pmap 39551 df-padd 39843 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 |
| This theorem is referenced by: cdleml9 41031 erngdvlem4 41038 erng1r 41042 erngdvlem4-rN 41046 dvalveclem 41072 dvheveccl 41159 dihord6apre 41303 dihatlat 41381 |
| Copyright terms: Public domain | W3C validator |