| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1ne0 | Structured version Visualization version GIF version | ||
| Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.) |
| Ref | Expression |
|---|---|
| tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo1ne0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoid0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | tendoid0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoid0.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | cdlemftr0 40569 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
| 5 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → 𝑔 ≠ ( I ↾ 𝐵)) | |
| 6 | fveq1 6860 | . . . . . . . 8 ⊢ (( I ↾ 𝑇) = 𝑂 → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = (𝑂‘𝑔)) |
| 8 | simpl2 1193 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 ∈ 𝑇) | |
| 9 | fvresi 7150 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = 𝑔) |
| 11 | tendoid0.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 12 | 11, 1 | tendo02 40788 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 13 | 8, 12 | syl 17 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 14 | 7, 10, 13 | 3eqtr3d 2773 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 = ( I ↾ 𝐵)) |
| 15 | 14 | ex 412 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (( I ↾ 𝑇) = 𝑂 → 𝑔 = ( I ↾ 𝐵))) |
| 16 | 15 | necon3d 2947 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
| 17 | 5, 16 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → ( I ↾ 𝑇) ≠ 𝑂) |
| 18 | 17 | rexlimdv3a 3139 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂)) |
| 19 | 4, 18 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 ‘cfv 6514 Basecbs 17186 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-undef 8255 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 |
| This theorem is referenced by: cdleml9 40985 erngdvlem4 40992 erng1r 40996 erngdvlem4-rN 41000 dvalveclem 41026 dvheveccl 41113 dihord6apre 41257 dihatlat 41335 |
| Copyright terms: Public domain | W3C validator |