Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo1ne0 Structured version   Visualization version   GIF version

Theorem tendo1ne0 40829
Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo1ne0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo1ne0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . 3 𝐵 = (Base‘𝐾)
2 tendoid0.h . . 3 𝐻 = (LHyp‘𝐾)
3 tendoid0.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3cdlemftr0 40569 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵))
5 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → 𝑔 ≠ ( I ↾ 𝐵))
6 fveq1 6860 . . . . . . . 8 (( I ↾ 𝑇) = 𝑂 → (( I ↾ 𝑇)‘𝑔) = (𝑂𝑔))
76adantl 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = (𝑂𝑔))
8 simpl2 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔𝑇)
9 fvresi 7150 . . . . . . . 8 (𝑔𝑇 → (( I ↾ 𝑇)‘𝑔) = 𝑔)
108, 9syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (( I ↾ 𝑇)‘𝑔) = 𝑔)
11 tendoid0.o . . . . . . . . 9 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1211, 1tendo02 40788 . . . . . . . 8 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
138, 12syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → (𝑂𝑔) = ( I ↾ 𝐵))
147, 10, 133eqtr3d 2773 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ( I ↾ 𝑇) = 𝑂) → 𝑔 = ( I ↾ 𝐵))
1514ex 412 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → (( I ↾ 𝑇) = 𝑂𝑔 = ( I ↾ 𝐵)))
1615necon3d 2947 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → (𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂))
175, 16mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) → ( I ↾ 𝑇) ≠ 𝑂)
1817rexlimdv3a 3139 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵) → ( I ↾ 𝑇) ≠ 𝑂))
194, 18mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cmpt 5191   I cid 5535  cres 5643  cfv 6514  Basecbs 17186  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  cdleml9  40985  erngdvlem4  40992  erng1r  40996  erngdvlem4-rN  41000  dvalveclem  41026  dvheveccl  41113  dihord6apre  41257  dihatlat  41335
  Copyright terms: Public domain W3C validator