![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo1ne0 | Structured version Visualization version GIF version |
Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | β’ π΅ = (BaseβπΎ) |
tendoid0.h | β’ π» = (LHypβπΎ) |
tendoid0.t | β’ π = ((LTrnβπΎ)βπ) |
tendoid0.e | β’ πΈ = ((TEndoβπΎ)βπ) |
tendoid0.o | β’ π = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
tendo1ne0 | β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoid0.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | tendoid0.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | tendoid0.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
4 | 1, 2, 3 | cdlemftr0 39743 | . 2 β’ ((πΎ β HL β§ π β π») β βπ β π π β ( I βΎ π΅)) |
5 | simp3 1137 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β π β ( I βΎ π΅)) | |
6 | fveq1 6890 | . . . . . . . 8 β’ (( I βΎ π) = π β (( I βΎ π)βπ) = (πβπ)) | |
7 | 6 | adantl 481 | . . . . . . 7 β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β§ ( I βΎ π) = π) β (( I βΎ π)βπ) = (πβπ)) |
8 | simpl2 1191 | . . . . . . . 8 β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β§ ( I βΎ π) = π) β π β π) | |
9 | fvresi 7173 | . . . . . . . 8 β’ (π β π β (( I βΎ π)βπ) = π) | |
10 | 8, 9 | syl 17 | . . . . . . 7 β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β§ ( I βΎ π) = π) β (( I βΎ π)βπ) = π) |
11 | tendoid0.o | . . . . . . . . 9 β’ π = (π β π β¦ ( I βΎ π΅)) | |
12 | 11, 1 | tendo02 39962 | . . . . . . . 8 β’ (π β π β (πβπ) = ( I βΎ π΅)) |
13 | 8, 12 | syl 17 | . . . . . . 7 β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β§ ( I βΎ π) = π) β (πβπ) = ( I βΎ π΅)) |
14 | 7, 10, 13 | 3eqtr3d 2779 | . . . . . 6 β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β§ ( I βΎ π) = π) β π = ( I βΎ π΅)) |
15 | 14 | ex 412 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β (( I βΎ π) = π β π = ( I βΎ π΅))) |
16 | 15 | necon3d 2960 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β (π β ( I βΎ π΅) β ( I βΎ π) β π)) |
17 | 5, 16 | mpd 15 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β ( I βΎ π΅)) β ( I βΎ π) β π) |
18 | 17 | rexlimdv3a 3158 | . 2 β’ ((πΎ β HL β§ π β π») β (βπ β π π β ( I βΎ π΅) β ( I βΎ π) β π)) |
19 | 4, 18 | mpd 15 | 1 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 β¦ cmpt 5231 I cid 5573 βΎ cres 5678 βcfv 6543 Basecbs 17149 HLchlt 38524 LHypclh 39159 LTrncltrn 39276 TEndoctendo 39927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-undef 8262 df-map 8826 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 |
This theorem is referenced by: cdleml9 40159 erngdvlem4 40166 erng1r 40170 erngdvlem4-rN 40174 dvalveclem 40200 dvheveccl 40287 dihord6apre 40431 dihatlat 40509 |
Copyright terms: Public domain | W3C validator |