Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0co2 Structured version   Visualization version   GIF version

Theorem tendo0co2 38802
Description: The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 39034? (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0co2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂‘(𝐹𝐺)) = ((𝑂𝐹) ∘ (𝑂𝐺)))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0co2
StepHypRef Expression
1 tendo0.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendo0.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 38733 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
4 tendo0.o . . . 4 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 tendo0.b . . . 4 𝐵 = (Base‘𝐾)
64, 5tendo02 38801 . . 3 ((𝐹𝐺) ∈ 𝑇 → (𝑂‘(𝐹𝐺)) = ( I ↾ 𝐵))
73, 6syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂‘(𝐹𝐺)) = ( I ↾ 𝐵))
84, 5tendo02 38801 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
983ad2ant2 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂𝐹) = ( I ↾ 𝐵))
104, 5tendo02 38801 . . . . 5 (𝐺𝑇 → (𝑂𝐺) = ( I ↾ 𝐵))
11103ad2ant3 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂𝐺) = ( I ↾ 𝐵))
129, 11coeq12d 5773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑂𝐹) ∘ (𝑂𝐺)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)))
13 f1oi 6754 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
14 f1of 6716 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
15 fcoi1 6648 . . . 4 (( I ↾ 𝐵):𝐵𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵))
1613, 14, 15mp2b 10 . . 3 (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)
1712, 16eqtr2di 2795 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ( I ↾ 𝐵) = ((𝑂𝐹) ∘ (𝑂𝐺)))
187, 17eqtrd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂‘(𝐹𝐺)) = ((𝑂𝐹) ∘ (𝑂𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5157   I cid 5488  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  tendo0cl  38804
  Copyright terms: Public domain W3C validator