| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0co2 | Structured version Visualization version GIF version | ||
| Description: The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 41014? (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo0co2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendo0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | tendo0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | 1, 2 | ltrnco 40713 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
| 4 | tendo0.o | . . . 4 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 5 | tendo0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | 4, 5 | tendo02 40781 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ 𝑇 → (𝑂‘(𝐹 ∘ 𝐺)) = ( I ↾ 𝐵)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ( I ↾ 𝐵)) |
| 8 | 4, 5 | tendo02 40781 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| 10 | 4, 5 | tendo02 40781 | . . . . 5 ⊢ (𝐺 ∈ 𝑇 → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
| 11 | 10 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
| 12 | 9, 11 | coeq12d 5828 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑂‘𝐹) ∘ (𝑂‘𝐺)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵))) |
| 13 | f1oi 6838 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 14 | f1of 6800 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 15 | fcoi1 6734 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
| 16 | 13, 14, 15 | mp2b 10 | . . 3 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
| 17 | 12, 16 | eqtr2di 2781 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ( I ↾ 𝐵) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
| 18 | 7, 17 | eqtrd 2764 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: tendo0cl 40784 |
| Copyright terms: Public domain | W3C validator |