![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0co2 | Structured version Visualization version GIF version |
Description: The additive identity trace-perserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 37090? (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0co2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | tendo0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | ltrnco 36789 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
4 | tendo0.o | . . . 4 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
5 | tendo0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 4, 5 | tendo02 36857 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ 𝑇 → (𝑂‘(𝐹 ∘ 𝐺)) = ( I ↾ 𝐵)) |
7 | 3, 6 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ( I ↾ 𝐵)) |
8 | 4, 5 | tendo02 36857 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
9 | 8 | 3ad2ant2 1168 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
10 | 4, 5 | tendo02 36857 | . . . . 5 ⊢ (𝐺 ∈ 𝑇 → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
11 | 10 | 3ad2ant3 1169 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
12 | 9, 11 | coeq12d 5523 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑂‘𝐹) ∘ (𝑂‘𝐺)) = (( I ↾ 𝐵) ∘ ( I ↾ 𝐵))) |
13 | f1oi 6419 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
14 | f1of 6382 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
15 | fcoi1 6319 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
16 | 13, 14, 15 | mp2b 10 | . . 3 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
17 | 12, 16 | syl6req 2878 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ( I ↾ 𝐵) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
18 | 7, 17 | eqtrd 2861 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ↦ cmpt 4954 I cid 5251 ↾ cres 5348 ∘ ccom 5350 ⟶wf 6123 –1-1-onto→wf1o 6126 ‘cfv 6127 Basecbs 16229 HLchlt 35420 LHypclh 36054 LTrncltrn 36171 TEndoctendo 36822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-undef 7669 df-map 8129 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 df-lvols 35570 df-lines 35571 df-psubsp 35573 df-pmap 35574 df-padd 35866 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 |
This theorem is referenced by: tendo0cl 36860 |
Copyright terms: Public domain | W3C validator |