![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0co2 | Structured version Visualization version GIF version |
Description: The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 39486? (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | β’ π΅ = (BaseβπΎ) |
tendo0.h | β’ π» = (LHypβπΎ) |
tendo0.t | β’ π = ((LTrnβπΎ)βπ) |
tendo0.e | β’ πΈ = ((TEndoβπΎ)βπ) |
tendo0.o | β’ π = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
tendo0co2 | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ((πβπΉ) β (πβπΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | tendo0.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
3 | 1, 2 | ltrnco 39185 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πΉ β πΊ) β π) |
4 | tendo0.o | . . . 4 β’ π = (π β π β¦ ( I βΎ π΅)) | |
5 | tendo0.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
6 | 4, 5 | tendo02 39253 | . . 3 β’ ((πΉ β πΊ) β π β (πβ(πΉ β πΊ)) = ( I βΎ π΅)) |
7 | 3, 6 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ( I βΎ π΅)) |
8 | 4, 5 | tendo02 39253 | . . . . 5 β’ (πΉ β π β (πβπΉ) = ( I βΎ π΅)) |
9 | 8 | 3ad2ant2 1135 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβπΉ) = ( I βΎ π΅)) |
10 | 4, 5 | tendo02 39253 | . . . . 5 β’ (πΊ β π β (πβπΊ) = ( I βΎ π΅)) |
11 | 10 | 3ad2ant3 1136 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβπΊ) = ( I βΎ π΅)) |
12 | 9, 11 | coeq12d 5821 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((πβπΉ) β (πβπΊ)) = (( I βΎ π΅) β ( I βΎ π΅))) |
13 | f1oi 6823 | . . . 4 β’ ( I βΎ π΅):π΅β1-1-ontoβπ΅ | |
14 | f1of 6785 | . . . 4 β’ (( I βΎ π΅):π΅β1-1-ontoβπ΅ β ( I βΎ π΅):π΅βΆπ΅) | |
15 | fcoi1 6717 | . . . 4 β’ (( I βΎ π΅):π΅βΆπ΅ β (( I βΎ π΅) β ( I βΎ π΅)) = ( I βΎ π΅)) | |
16 | 13, 14, 15 | mp2b 10 | . . 3 β’ (( I βΎ π΅) β ( I βΎ π΅)) = ( I βΎ π΅) |
17 | 12, 16 | eqtr2di 2794 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ( I βΎ π΅) = ((πβπΉ) β (πβπΊ))) |
18 | 7, 17 | eqtrd 2777 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ((πβπΉ) β (πβπΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β¦ cmpt 5189 I cid 5531 βΎ cres 5636 β ccom 5638 βΆwf 6493 β1-1-ontoβwf1o 6496 βcfv 6497 Basecbs 17084 HLchlt 37815 LHypclh 38450 LTrncltrn 38567 TEndoctendo 39218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-riotaBAD 37418 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-undef 8205 df-map 8768 df-proset 18185 df-poset 18203 df-plt 18220 df-lub 18236 df-glb 18237 df-join 18238 df-meet 18239 df-p0 18315 df-p1 18316 df-lat 18322 df-clat 18389 df-oposet 37641 df-ol 37643 df-oml 37644 df-covers 37731 df-ats 37732 df-atl 37763 df-cvlat 37787 df-hlat 37816 df-llines 37964 df-lplanes 37965 df-lvols 37966 df-lines 37967 df-psubsp 37969 df-pmap 37970 df-padd 38262 df-lhyp 38454 df-laut 38455 df-ldil 38570 df-ltrn 38571 df-trl 38625 |
This theorem is referenced by: tendo0cl 39256 |
Copyright terms: Public domain | W3C validator |