![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0co2 | Structured version Visualization version GIF version |
Description: The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 39886? (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | β’ π΅ = (BaseβπΎ) |
tendo0.h | β’ π» = (LHypβπΎ) |
tendo0.t | β’ π = ((LTrnβπΎ)βπ) |
tendo0.e | β’ πΈ = ((TEndoβπΎ)βπ) |
tendo0.o | β’ π = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
tendo0co2 | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ((πβπΉ) β (πβπΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | tendo0.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
3 | 1, 2 | ltrnco 39585 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πΉ β πΊ) β π) |
4 | tendo0.o | . . . 4 β’ π = (π β π β¦ ( I βΎ π΅)) | |
5 | tendo0.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
6 | 4, 5 | tendo02 39653 | . . 3 β’ ((πΉ β πΊ) β π β (πβ(πΉ β πΊ)) = ( I βΎ π΅)) |
7 | 3, 6 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ( I βΎ π΅)) |
8 | 4, 5 | tendo02 39653 | . . . . 5 β’ (πΉ β π β (πβπΉ) = ( I βΎ π΅)) |
9 | 8 | 3ad2ant2 1134 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβπΉ) = ( I βΎ π΅)) |
10 | 4, 5 | tendo02 39653 | . . . . 5 β’ (πΊ β π β (πβπΊ) = ( I βΎ π΅)) |
11 | 10 | 3ad2ant3 1135 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβπΊ) = ( I βΎ π΅)) |
12 | 9, 11 | coeq12d 5864 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((πβπΉ) β (πβπΊ)) = (( I βΎ π΅) β ( I βΎ π΅))) |
13 | f1oi 6871 | . . . 4 β’ ( I βΎ π΅):π΅β1-1-ontoβπ΅ | |
14 | f1of 6833 | . . . 4 β’ (( I βΎ π΅):π΅β1-1-ontoβπ΅ β ( I βΎ π΅):π΅βΆπ΅) | |
15 | fcoi1 6765 | . . . 4 β’ (( I βΎ π΅):π΅βΆπ΅ β (( I βΎ π΅) β ( I βΎ π΅)) = ( I βΎ π΅)) | |
16 | 13, 14, 15 | mp2b 10 | . . 3 β’ (( I βΎ π΅) β ( I βΎ π΅)) = ( I βΎ π΅) |
17 | 12, 16 | eqtr2di 2789 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ( I βΎ π΅) = ((πβπΉ) β (πβπΊ))) |
18 | 7, 17 | eqtrd 2772 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ((πβπΉ) β (πβπΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β¦ cmpt 5231 I cid 5573 βΎ cres 5678 β ccom 5680 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 Basecbs 17143 HLchlt 38215 LHypclh 38850 LTrncltrn 38967 TEndoctendo 39618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-undef 8257 df-map 8821 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 |
This theorem is referenced by: tendo0cl 39656 |
Copyright terms: Public domain | W3C validator |