Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Visualization version   GIF version

Theorem tendoid0 37513
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoid0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
2 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3 tendoid0.b . . . . . 6 𝐵 = (Base‘𝐾)
42, 3tendo02 37475 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑂𝐹) = ( I ↾ 𝐵))
65eqeq2d 2807 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) ↔ (𝑈𝐹) = ( I ↾ 𝐵)))
7 simpl1 1184 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1185 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈𝐸)
9 tendoid0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 tendoid0.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
123, 9, 10, 11, 2tendo0cl 37478 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
137, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑂𝐸)
14 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝑈𝐹) = (𝑂𝐹))
15 simpl3l 1221 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹𝑇)
16 simpl3r 1222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹 ≠ ( I ↾ 𝐵))
173, 9, 10, 11tendocan 37512 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸 ∧ (𝑈𝐹) = (𝑂𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂)
187, 8, 13, 14, 15, 16, 17syl132anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈 = 𝑂)
1918ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) → 𝑈 = 𝑂))
206, 19sylbird 261 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂))
21 fveq1 6544 . . . 4 (𝑈 = 𝑂 → (𝑈𝐹) = (𝑂𝐹))
2221eqeq1d 2799 . . 3 (𝑈 = 𝑂 → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ (𝑂𝐹) = ( I ↾ 𝐵)))
235, 22syl5ibrcom 248 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈𝐹) = ( I ↾ 𝐵)))
2420, 23impbid 213 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  cmpt 5047   I cid 5354  cres 5452  cfv 6232  Basecbs 16316  HLchlt 36038  LHypclh 36672  LTrncltrn 36789  TEndoctendo 37440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-riotaBAD 35641
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-undef 7797  df-map 8265  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-p1 17483  df-lat 17489  df-clat 17551  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039  df-llines 36186  df-lplanes 36187  df-lvols 36188  df-lines 36189  df-psubsp 36191  df-pmap 36192  df-padd 36484  df-lhyp 36676  df-laut 36677  df-ldil 36792  df-ltrn 36793  df-trl 36847  df-tendo 37443
This theorem is referenced by:  tendoconid  37517  tendotr  37518  cdleml3N  37666  tendospcanN  37711
  Copyright terms: Public domain W3C validator