Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Visualization version   GIF version

Theorem tendoid0 39999
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐡 = (Baseβ€˜πΎ)
tendoid0.h 𝐻 = (LHypβ€˜πΎ)
tendoid0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoid0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendoid0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
tendoid0 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡) ↔ π‘ˆ = 𝑂))
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓
Allowed substitution hints:   π‘ˆ(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   π‘Š(𝑓)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1199 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ 𝐹 ∈ 𝑇)
2 tendoid0.o . . . . . 6 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
3 tendoid0.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
42, 3tendo02 39961 . . . . 5 (𝐹 ∈ 𝑇 β†’ (π‘‚β€˜πΉ) = ( I β†Ύ 𝐡))
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘‚β€˜πΉ) = ( I β†Ύ 𝐡))
65eqeq2d 2741 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ) ↔ (π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡)))
7 simpl1 1189 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
8 simpl2 1190 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ π‘ˆ ∈ 𝐸)
9 tendoid0.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
10 tendoid0.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
11 tendoid0.e . . . . . . 7 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
123, 9, 10, 11, 2tendo0cl 39964 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
137, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ 𝑂 ∈ 𝐸)
14 simpr 483 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ))
15 simpl3l 1226 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ 𝐹 ∈ 𝑇)
16 simpl3r 1227 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
173, 9, 10, 11tendocan 39998 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ π‘ˆ = 𝑂)
187, 8, 13, 14, 15, 16, 17syl132anc 1386 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) ∧ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ)) β†’ π‘ˆ = 𝑂)
1918ex 411 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ) β†’ π‘ˆ = 𝑂))
206, 19sylbird 259 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡) β†’ π‘ˆ = 𝑂))
21 fveq1 6889 . . . 4 (π‘ˆ = 𝑂 β†’ (π‘ˆβ€˜πΉ) = (π‘‚β€˜πΉ))
2221eqeq1d 2732 . . 3 (π‘ˆ = 𝑂 β†’ ((π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡) ↔ (π‘‚β€˜πΉ) = ( I β†Ύ 𝐡)))
235, 22syl5ibrcom 246 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆ = 𝑂 β†’ (π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡)))
2420, 23impbid 211 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡))) β†’ ((π‘ˆβ€˜πΉ) = ( I β†Ύ 𝐡) ↔ π‘ˆ = 𝑂))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   ↦ cmpt 5230   I cid 5572   β†Ύ cres 5677  β€˜cfv 6542  Basecbs 17148  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  TEndoctendo 39926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-tendo 39929
This theorem is referenced by:  tendoconid  40003  tendotr  40004  cdleml3N  40152  tendospcanN  40197
  Copyright terms: Public domain W3C validator