Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Visualization version   GIF version

Theorem tendoid0 40997
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoid0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
2 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3 tendoid0.b . . . . . 6 𝐵 = (Base‘𝐾)
42, 3tendo02 40959 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑂𝐹) = ( I ↾ 𝐵))
65eqeq2d 2744 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) ↔ (𝑈𝐹) = ( I ↾ 𝐵)))
7 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈𝐸)
9 tendoid0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 tendoid0.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
123, 9, 10, 11, 2tendo0cl 40962 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
137, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑂𝐸)
14 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝑈𝐹) = (𝑂𝐹))
15 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹𝑇)
16 simpl3r 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹 ≠ ( I ↾ 𝐵))
173, 9, 10, 11tendocan 40996 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸 ∧ (𝑈𝐹) = (𝑂𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂)
187, 8, 13, 14, 15, 16, 17syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈 = 𝑂)
1918ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) → 𝑈 = 𝑂))
206, 19sylbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂))
21 fveq1 6830 . . . 4 (𝑈 = 𝑂 → (𝑈𝐹) = (𝑂𝐹))
2221eqeq1d 2735 . . 3 (𝑈 = 𝑂 → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ (𝑂𝐹) = ( I ↾ 𝐵)))
235, 22syl5ibrcom 247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈𝐹) = ( I ↾ 𝐵)))
2420, 23impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cmpt 5176   I cid 5515  cres 5623  cfv 6489  Basecbs 17127  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  TEndoctendo 40924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331  df-tendo 40927
This theorem is referenced by:  tendoconid  41001  tendotr  41002  cdleml3N  41150  tendospcanN  41195
  Copyright terms: Public domain W3C validator