Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Visualization version   GIF version

Theorem tendoid0 40864
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b 𝐵 = (Base‘𝐾)
tendoid0.h 𝐻 = (LHyp‘𝐾)
tendoid0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoid0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoid0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoid0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝐹𝑇)
2 tendoid0.o . . . . . 6 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3 tendoid0.b . . . . . 6 𝐵 = (Base‘𝐾)
42, 3tendo02 40826 . . . . 5 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑂𝐹) = ( I ↾ 𝐵))
65eqeq2d 2742 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) ↔ (𝑈𝐹) = ( I ↾ 𝐵)))
7 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈𝐸)
9 tendoid0.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 tendoid0.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoid0.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
123, 9, 10, 11, 2tendo0cl 40829 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
137, 12syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑂𝐸)
14 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → (𝑈𝐹) = (𝑂𝐹))
15 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹𝑇)
16 simpl3r 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝐹 ≠ ( I ↾ 𝐵))
173, 9, 10, 11tendocan 40863 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑂𝐸 ∧ (𝑈𝐹) = (𝑂𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂)
187, 8, 13, 14, 15, 16, 17syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈𝐹) = (𝑂𝐹)) → 𝑈 = 𝑂)
1918ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = (𝑂𝐹) → 𝑈 = 𝑂))
206, 19sylbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂))
21 fveq1 6816 . . . 4 (𝑈 = 𝑂 → (𝑈𝐹) = (𝑂𝐹))
2221eqeq1d 2733 . . 3 (𝑈 = 𝑂 → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ (𝑂𝐹) = ( I ↾ 𝐵)))
235, 22syl5ibrcom 247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈𝐹) = ( I ↾ 𝐵)))
2420, 23impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cmpt 5167   I cid 5505  cres 5613  cfv 6476  Basecbs 17115  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  TEndoctendo 40791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tendo 40794
This theorem is referenced by:  tendoconid  40868  tendotr  40869  cdleml3N  41017  tendospcanN  41062
  Copyright terms: Public domain W3C validator