Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoid0 | Structured version Visualization version GIF version |
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendoid0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝐹 ∈ 𝑇) | |
2 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | tendoid0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | 2, 3 | tendo02 38728 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
6 | 5 | eqeq2d 2749 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) ↔ (𝑈‘𝐹) = ( I ↾ 𝐵))) |
7 | simpl1 1189 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simpl2 1190 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 ∈ 𝐸) | |
9 | tendoid0.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoid0.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoid0.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
12 | 3, 9, 10, 11, 2 | tendo0cl 38731 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
13 | 7, 12 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑂 ∈ 𝐸) |
14 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
15 | simpl3l 1226 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ∈ 𝑇) | |
16 | simpl3r 1227 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
17 | 3, 9, 10, 11 | tendocan 38765 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂) |
18 | 7, 8, 13, 14, 15, 16, 17 | syl132anc 1386 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 = 𝑂) |
19 | 18 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) → 𝑈 = 𝑂)) |
20 | 6, 19 | sylbird 259 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂)) |
21 | fveq1 6755 | . . . 4 ⊢ (𝑈 = 𝑂 → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
22 | 21 | eqeq1d 2740 | . . 3 ⊢ (𝑈 = 𝑂 → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ (𝑂‘𝐹) = ( I ↾ 𝐵))) |
23 | 5, 22 | syl5ibrcom 246 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈‘𝐹) = ( I ↾ 𝐵))) |
24 | 20, 23 | impbid 211 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 TEndoctendo 38693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-undef 8060 df-map 8575 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tendo 38696 |
This theorem is referenced by: tendoconid 38770 tendotr 38771 cdleml3N 38919 tendospcanN 38964 |
Copyright terms: Public domain | W3C validator |