![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoid0 | Structured version Visualization version GIF version |
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendoid0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝐹 ∈ 𝑇) | |
2 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | tendoid0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | 2, 3 | tendo02 40254 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
6 | 5 | eqeq2d 2739 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) ↔ (𝑈‘𝐹) = ( I ↾ 𝐵))) |
7 | simpl1 1189 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simpl2 1190 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 ∈ 𝐸) | |
9 | tendoid0.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoid0.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoid0.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
12 | 3, 9, 10, 11, 2 | tendo0cl 40257 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
13 | 7, 12 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑂 ∈ 𝐸) |
14 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
15 | simpl3l 1226 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ∈ 𝑇) | |
16 | simpl3r 1227 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
17 | 3, 9, 10, 11 | tendocan 40291 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂) |
18 | 7, 8, 13, 14, 15, 16, 17 | syl132anc 1386 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 = 𝑂) |
19 | 18 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) → 𝑈 = 𝑂)) |
20 | 6, 19 | sylbird 260 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂)) |
21 | fveq1 6890 | . . . 4 ⊢ (𝑈 = 𝑂 → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
22 | 21 | eqeq1d 2730 | . . 3 ⊢ (𝑈 = 𝑂 → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ (𝑂‘𝐹) = ( I ↾ 𝐵))) |
23 | 5, 22 | syl5ibrcom 246 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈‘𝐹) = ( I ↾ 𝐵))) |
24 | 20, 23 | impbid 211 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ↦ cmpt 5225 I cid 5569 ↾ cres 5674 ‘cfv 6542 Basecbs 17173 HLchlt 38816 LHypclh 39451 LTrncltrn 39568 TEndoctendo 40219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-riotaBAD 38419 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-undef 8272 df-map 8840 df-proset 18280 df-poset 18298 df-plt 18315 df-lub 18331 df-glb 18332 df-join 18333 df-meet 18334 df-p0 18410 df-p1 18411 df-lat 18417 df-clat 18484 df-oposet 38642 df-ol 38644 df-oml 38645 df-covers 38732 df-ats 38733 df-atl 38764 df-cvlat 38788 df-hlat 38817 df-llines 38965 df-lplanes 38966 df-lvols 38967 df-lines 38968 df-psubsp 38970 df-pmap 38971 df-padd 39263 df-lhyp 39455 df-laut 39456 df-ldil 39571 df-ltrn 39572 df-trl 39626 df-tendo 40222 |
This theorem is referenced by: tendoconid 40296 tendotr 40297 cdleml3N 40445 tendospcanN 40490 |
Copyright terms: Public domain | W3C validator |