![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoid0 | Structured version Visualization version GIF version |
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendoid0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝐹 ∈ 𝑇) | |
2 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | tendoid0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | 2, 3 | tendo02 37475 | . . . . 5 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
6 | 5 | eqeq2d 2807 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) ↔ (𝑈‘𝐹) = ( I ↾ 𝐵))) |
7 | simpl1 1184 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simpl2 1185 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 ∈ 𝐸) | |
9 | tendoid0.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | tendoid0.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | tendoid0.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
12 | 3, 9, 10, 11, 2 | tendo0cl 37478 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
13 | 7, 12 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑂 ∈ 𝐸) |
14 | simpr 485 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
15 | simpl3l 1221 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ∈ 𝑇) | |
16 | simpl3r 1222 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
17 | 3, 9, 10, 11 | tendocan 37512 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑂) |
18 | 7, 8, 13, 14, 15, 16, 17 | syl132anc 1381 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑈‘𝐹) = (𝑂‘𝐹)) → 𝑈 = 𝑂) |
19 | 18 | ex 413 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = (𝑂‘𝐹) → 𝑈 = 𝑂)) |
20 | 6, 19 | sylbird 261 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) → 𝑈 = 𝑂)) |
21 | fveq1 6544 | . . . 4 ⊢ (𝑈 = 𝑂 → (𝑈‘𝐹) = (𝑂‘𝐹)) | |
22 | 21 | eqeq1d 2799 | . . 3 ⊢ (𝑈 = 𝑂 → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ (𝑂‘𝐹) = ( I ↾ 𝐵))) |
23 | 5, 22 | syl5ibrcom 248 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑈 = 𝑂 → (𝑈‘𝐹) = ( I ↾ 𝐵))) |
24 | 20, 23 | impbid 213 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈‘𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ↦ cmpt 5047 I cid 5354 ↾ cres 5452 ‘cfv 6232 Basecbs 16316 HLchlt 36038 LHypclh 36672 LTrncltrn 36789 TEndoctendo 37440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-riotaBAD 35641 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-1st 7552 df-2nd 7553 df-undef 7797 df-map 8265 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-p1 17483 df-lat 17489 df-clat 17551 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 df-llines 36186 df-lplanes 36187 df-lvols 36188 df-lines 36189 df-psubsp 36191 df-pmap 36192 df-padd 36484 df-lhyp 36676 df-laut 36677 df-ldil 36792 df-ltrn 36793 df-trl 36847 df-tendo 37443 |
This theorem is referenced by: tendoconid 37517 tendotr 37518 cdleml3N 37666 tendospcanN 37711 |
Copyright terms: Public domain | W3C validator |