![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0mul | Structured version Visualization version GIF version |
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
tendoid0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoid0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoid0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoid0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0mul | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂 ∘ 𝑈) = 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoid0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | tendoid0.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendoid0.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | cdlemftr0 39427 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
5 | 4 | adantr 481 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ∃𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵)) |
6 | simpll 765 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | tendoid0.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
8 | tendoid0.o | . . . . . 6 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
9 | 1, 2, 3, 7, 8 | tendo0cl 39649 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
10 | 9 | ad2antrr 724 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑂 ∈ 𝐸) |
11 | simplr 767 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑈 ∈ 𝐸) | |
12 | 2, 7 | tendococl 39631 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) → (𝑂 ∘ 𝑈) ∈ 𝐸) |
13 | 6, 10, 11, 12 | syl3anc 1371 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂 ∘ 𝑈) ∈ 𝐸) |
14 | simprl 769 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → 𝑔 ∈ 𝑇) | |
15 | 2, 3, 7 | tendocl 39626 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑈‘𝑔) ∈ 𝑇) |
16 | 6, 11, 14, 15 | syl3anc 1371 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘𝑔) ∈ 𝑇) |
17 | 8, 1 | tendo02 39646 | . . . . 5 ⊢ ((𝑈‘𝑔) ∈ 𝑇 → (𝑂‘(𝑈‘𝑔)) = ( I ↾ 𝐵)) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂‘(𝑈‘𝑔)) = ( I ↾ 𝐵)) |
19 | 2, 3, 7 | tendocoval 39625 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑂 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂 ∘ 𝑈)‘𝑔) = (𝑂‘(𝑈‘𝑔))) |
20 | 6, 10, 11, 14, 19 | syl121anc 1375 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑂 ∘ 𝑈)‘𝑔) = (𝑂‘(𝑈‘𝑔))) |
21 | 8, 1 | tendo02 39646 | . . . . 5 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
22 | 21 | ad2antrl 726 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
23 | 18, 20, 22 | 3eqtr4d 2782 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → ((𝑂 ∘ 𝑈)‘𝑔) = (𝑂‘𝑔)) |
24 | simpr 485 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) | |
25 | 1, 2, 3, 7 | tendocan 39683 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑂 ∘ 𝑈) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ((𝑂 ∘ 𝑈)‘𝑔) = (𝑂‘𝑔)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂 ∘ 𝑈) = 𝑂) |
26 | 6, 13, 10, 23, 24, 25 | syl131anc 1383 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) ∧ (𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑂 ∘ 𝑈) = 𝑂) |
27 | 5, 26 | rexlimddv 3161 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑂 ∘ 𝑈) = 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 ↦ cmpt 5230 I cid 5572 ↾ cres 5677 ∘ ccom 5679 ‘cfv 6540 Basecbs 17140 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 TEndoctendo 39611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-tendo 39614 |
This theorem is referenced by: cdleml5N 39839 cdleml9 39843 |
Copyright terms: Public domain | W3C validator |