Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml7 Structured version   Visualization version   GIF version

Theorem cdleml7 40459
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐡 = (Baseβ€˜πΎ)
cdleml6.j ∨ = (joinβ€˜πΎ)
cdleml6.m ∧ = (meetβ€˜πΎ)
cdleml6.h 𝐻 = (LHypβ€˜πΎ)
cdleml6.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdleml6.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdleml6.p 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
cdleml6.z 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
cdleml6.y π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdleml6.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
cdleml6.u π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
cdleml6.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
cdleml7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (( I β†Ύ 𝑇)β€˜β„Ž))
Distinct variable groups:   𝑔,𝑏,𝑧, ∧   ∨ ,𝑏,𝑔,𝑧   𝐡,𝑏,𝑓,𝑔,𝑧   β„Ž,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝑔,𝑍
Allowed substitution hints:   𝐡(β„Ž,𝑠)   𝑄(𝑓,β„Ž,𝑠)   𝑅(𝑓,β„Ž,𝑠)   𝑇(β„Ž,𝑠)   π‘ˆ(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐻(𝑓,β„Ž,𝑠)   ∨ (𝑓,β„Ž,𝑠)   𝐾(𝑓,β„Ž,𝑠)   ∧ (𝑓,β„Ž,𝑠)   π‘Š(𝑓,β„Ž,𝑠)   𝑋(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   π‘Œ(𝑓,𝑔,β„Ž,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝑍(𝑧,𝑓,β„Ž,𝑠,𝑏)

Proof of Theorem cdleml7
StepHypRef Expression
1 cdleml6.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdleml6.j . . . 4 ∨ = (joinβ€˜πΎ)
3 cdleml6.m . . . 4 ∧ = (meetβ€˜πΎ)
4 cdleml6.h . . . 4 𝐻 = (LHypβ€˜πΎ)
5 cdleml6.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 cdleml6.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
7 cdleml6.p . . . 4 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
8 cdleml6.z . . . 4 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
9 cdleml6.y . . . 4 π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
10 cdleml6.x . . . 4 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
11 cdleml6.u . . . 4 π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
12 cdleml6.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
13 cdleml6.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cdleml6 40458 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∈ 𝐸 ∧ (π‘ˆβ€˜(π‘ β€˜β„Ž)) = β„Ž))
1514simprd 494 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆβ€˜(π‘ β€˜β„Ž)) = β„Ž)
16 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
1714simpld 493 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ ∈ 𝐸)
18 simp3l 1198 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ 𝑠 ∈ 𝐸)
19 simp2 1134 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ β„Ž ∈ 𝑇)
204, 5, 12tendocoval 40243 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (π‘ˆβ€˜(π‘ β€˜β„Ž)))
2116, 17, 18, 19, 20syl121anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (π‘ˆβ€˜(π‘ β€˜β„Ž)))
22 fvresi 7186 . . 3 (β„Ž ∈ 𝑇 β†’ (( I β†Ύ 𝑇)β€˜β„Ž) = β„Ž)
23223ad2ant2 1131 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (( I β†Ύ 𝑇)β€˜β„Ž) = β„Ž)
2415, 21, 233eqtr4d 2777 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ β„Ž ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ((π‘ˆ ∘ 𝑠)β€˜β„Ž) = (( I β†Ύ 𝑇)β€˜β„Ž))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2936  βˆ€wral 3057  ifcif 4530   ↦ cmpt 5233   I cid 5577  β—‘ccnv 5679   β†Ύ cres 5682   ∘ ccom 5684  β€˜cfv 6551  β„©crio 7379  (class class class)co 7424  Basecbs 17185  occoc 17246  joincjn 18308  meetcmee 18309  HLchlt 38826  LHypclh 39461  LTrncltrn 39578  trLctrl 39635  TEndoctendo 40229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-riotaBAD 38429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 7997  df-2nd 7998  df-undef 8283  df-map 8851  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-llines 38975  df-lplanes 38976  df-lvols 38977  df-lines 38978  df-psubsp 38980  df-pmap 38981  df-padd 39273  df-lhyp 39465  df-laut 39466  df-ldil 39581  df-ltrn 39582  df-trl 39636  df-tendo 40232
This theorem is referenced by:  cdleml8  40460
  Copyright terms: Public domain W3C validator