![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml7 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
Ref | Expression |
---|---|
cdleml6.b | β’ π΅ = (BaseβπΎ) |
cdleml6.j | β’ β¨ = (joinβπΎ) |
cdleml6.m | β’ β§ = (meetβπΎ) |
cdleml6.h | β’ π» = (LHypβπΎ) |
cdleml6.t | β’ π = ((LTrnβπΎ)βπ) |
cdleml6.r | β’ π = ((trLβπΎ)βπ) |
cdleml6.p | β’ π = ((ocβπΎ)βπ) |
cdleml6.z | β’ π = ((π β¨ (π βπ)) β§ ((ββπ) β¨ (π β(π β β‘(π ββ))))) |
cdleml6.y | β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) |
cdleml6.x | β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π β(π ββ)) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) |
cdleml6.u | β’ π = (π β π β¦ if((π ββ) = β, π, π)) |
cdleml6.e | β’ πΈ = ((TEndoβπΎ)βπ) |
cdleml6.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
cdleml7 | β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β ((π β π )ββ) = (( I βΎ π)ββ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleml6.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | cdleml6.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | cdleml6.m | . . . 4 β’ β§ = (meetβπΎ) | |
4 | cdleml6.h | . . . 4 β’ π» = (LHypβπΎ) | |
5 | cdleml6.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
6 | cdleml6.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
7 | cdleml6.p | . . . 4 β’ π = ((ocβπΎ)βπ) | |
8 | cdleml6.z | . . . 4 β’ π = ((π β¨ (π βπ)) β§ ((ββπ) β¨ (π β(π β β‘(π ββ))))) | |
9 | cdleml6.y | . . . 4 β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) | |
10 | cdleml6.x | . . . 4 β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π β(π ββ)) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) | |
11 | cdleml6.u | . . . 4 β’ π = (π β π β¦ if((π ββ) = β, π, π)) | |
12 | cdleml6.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
13 | cdleml6.o | . . . 4 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdleml6 39847 | . . 3 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β (π β πΈ β§ (πβ(π ββ)) = β)) |
15 | 14 | simprd 496 | . 2 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β (πβ(π ββ)) = β) |
16 | simp1 1136 | . . 3 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β (πΎ β HL β§ π β π»)) | |
17 | 14 | simpld 495 | . . 3 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β π β πΈ) |
18 | simp3l 1201 | . . 3 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β π β πΈ) | |
19 | simp2 1137 | . . 3 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β β β π) | |
20 | 4, 5, 12 | tendocoval 39632 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β πΈ β§ π β πΈ) β§ β β π) β ((π β π )ββ) = (πβ(π ββ))) |
21 | 16, 17, 18, 19, 20 | syl121anc 1375 | . 2 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β ((π β π )ββ) = (πβ(π ββ))) |
22 | fvresi 7170 | . . 3 β’ (β β π β (( I βΎ π)ββ) = β) | |
23 | 22 | 3ad2ant2 1134 | . 2 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β (( I βΎ π)ββ) = β) |
24 | 15, 21, 23 | 3eqtr4d 2782 | 1 β’ (((πΎ β HL β§ π β π») β§ β β π β§ (π β πΈ β§ π β 0 )) β ((π β π )ββ) = (( I βΎ π)ββ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 ifcif 4528 β¦ cmpt 5231 I cid 5573 β‘ccnv 5675 βΎ cres 5678 β ccom 5680 βcfv 6543 β©crio 7363 (class class class)co 7408 Basecbs 17143 occoc 17204 joincjn 18263 meetcmee 18264 HLchlt 38215 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 TEndoctendo 39618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-undef 8257 df-map 8821 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-tendo 39621 |
This theorem is referenced by: cdleml8 39849 |
Copyright terms: Public domain | W3C validator |