|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml7 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) | 
| Ref | Expression | 
|---|---|
| cdleml6.b | ⊢ 𝐵 = (Base‘𝐾) | 
| cdleml6.j | ⊢ ∨ = (join‘𝐾) | 
| cdleml6.m | ⊢ ∧ = (meet‘𝐾) | 
| cdleml6.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| cdleml6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| cdleml6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| cdleml6.p | ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | 
| cdleml6.z | ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | 
| cdleml6.y | ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | 
| cdleml6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | 
| cdleml6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | 
| cdleml6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| cdleml6.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | 
| Ref | Expression | 
|---|---|
| cdleml7 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cdleml6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdleml6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleml6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleml6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdleml6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | cdleml6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 7 | cdleml6.p | . . . 4 ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | |
| 8 | cdleml6.z | . . . 4 ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | |
| 9 | cdleml6.y | . . . 4 ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 10 | cdleml6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | |
| 11 | cdleml6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | |
| 12 | cdleml6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 13 | cdleml6.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdleml6 40984 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) | 
| 15 | 14 | simprd 495 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈‘(𝑠‘ℎ)) = ℎ) | 
| 16 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 14 | simpld 494 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) | 
| 18 | simp3l 1201 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | |
| 19 | simp2 1137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ℎ ∈ 𝑇) | |
| 20 | 4, 5, 12 | tendocoval 40769 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) ∧ ℎ ∈ 𝑇) → ((𝑈 ∘ 𝑠)‘ℎ) = (𝑈‘(𝑠‘ℎ))) | 
| 21 | 16, 17, 18, 19, 20 | syl121anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (𝑈‘(𝑠‘ℎ))) | 
| 22 | fvresi 7194 | . . 3 ⊢ (ℎ ∈ 𝑇 → (( I ↾ 𝑇)‘ℎ) = ℎ) | |
| 23 | 22 | 3ad2ant2 1134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (( I ↾ 𝑇)‘ℎ) = ℎ) | 
| 24 | 15, 21, 23 | 3eqtr4d 2786 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ifcif 4524 ↦ cmpt 5224 I cid 5576 ◡ccnv 5683 ↾ cres 5686 ∘ ccom 5688 ‘cfv 6560 ℩crio 7388 (class class class)co 7432 Basecbs 17248 occoc 17306 joincjn 18358 meetcmee 18359 HLchlt 39352 LHypclh 39987 LTrncltrn 40104 trLctrl 40161 TEndoctendo 40755 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-riotaBAD 38955 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-undef 8299 df-map 8869 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tendo 40758 | 
| This theorem is referenced by: cdleml8 40986 | 
| Copyright terms: Public domain | W3C validator |