| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml7 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
| Ref | Expression |
|---|---|
| cdleml6.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleml6.j | ⊢ ∨ = (join‘𝐾) |
| cdleml6.m | ⊢ ∧ = (meet‘𝐾) |
| cdleml6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleml6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdleml6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdleml6.p | ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
| cdleml6.z | ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
| cdleml6.y | ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| cdleml6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
| cdleml6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
| cdleml6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdleml6.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| cdleml7 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleml6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdleml6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleml6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleml6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdleml6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | cdleml6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 7 | cdleml6.p | . . . 4 ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | |
| 8 | cdleml6.z | . . . 4 ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | |
| 9 | cdleml6.y | . . . 4 ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 10 | cdleml6.x | . . . 4 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | |
| 11 | cdleml6.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | |
| 12 | cdleml6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 13 | cdleml6.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdleml6 40975 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∈ 𝐸 ∧ (𝑈‘(𝑠‘ℎ)) = ℎ)) |
| 15 | 14 | simprd 495 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈‘(𝑠‘ℎ)) = ℎ) |
| 16 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 14 | simpld 494 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ∈ 𝐸) |
| 18 | simp3l 1202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | |
| 19 | simp2 1137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ℎ ∈ 𝑇) | |
| 20 | 4, 5, 12 | tendocoval 40760 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸) ∧ ℎ ∈ 𝑇) → ((𝑈 ∘ 𝑠)‘ℎ) = (𝑈‘(𝑠‘ℎ))) |
| 21 | 16, 17, 18, 19, 20 | syl121anc 1377 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (𝑈‘(𝑠‘ℎ))) |
| 22 | fvresi 7147 | . . 3 ⊢ (ℎ ∈ 𝑇 → (( I ↾ 𝑇)‘ℎ) = ℎ) | |
| 23 | 22 | 3ad2ant2 1134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (( I ↾ 𝑇)‘ℎ) = ℎ) |
| 24 | 15, 21, 23 | 3eqtr4d 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ℎ ∈ 𝑇 ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ((𝑈 ∘ 𝑠)‘ℎ) = (( I ↾ 𝑇)‘ℎ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ifcif 4488 ↦ cmpt 5188 I cid 5532 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 Basecbs 17179 occoc 17228 joincjn 18272 meetcmee 18273 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 |
| This theorem is referenced by: cdleml8 40977 |
| Copyright terms: Public domain | W3C validator |