MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcnp Structured version   Visualization version   GIF version

Theorem tgcnp 23168
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
tgcnp.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
tgcnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 tgcnp.5 . . . 4 (𝜑𝑃𝑋)
4 iscnp 23152 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
6 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
7 topontop 22828 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
82, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
96, 8eqeltrrd 2832 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
10 tgclb 22885 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
119, 10sylibr 234 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
12 bastg 22881 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1311, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1413, 6sseqtrrd 3967 . . . . 5 (𝜑𝐵𝐾)
15 ssralv 3998 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1614, 15syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1716anim2d 612 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
185, 17sylbid 240 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
196eleq2d 2817 . . . . . . 7 (𝜑 → (𝑧𝐾𝑧 ∈ (topGen‘𝐵)))
2019biimpa 476 . . . . . 6 ((𝜑𝑧𝐾) → 𝑧 ∈ (topGen‘𝐵))
21 tg2 22880 . . . . . . . . 9 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧))
22 r19.29 3095 . . . . . . . . . . 11 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)))
23 sstr 3938 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ⊆ 𝑦𝑦𝑧) → (𝐹𝑥) ⊆ 𝑧)
2423expcom 413 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑧))
2524anim2d 612 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2625reximdv 3147 . . . . . . . . . . . . . . 15 (𝑦𝑧 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2726com12 32 . . . . . . . . . . . . . 14 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2827imim2i 16 . . . . . . . . . . . . 13 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑦 → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
2928imp32 418 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3029rexlimivw 3129 . . . . . . . . . . 11 (∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3122, 30syl 17 . . . . . . . . . 10 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3231expcom 413 . . . . . . . . 9 (∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3321, 32syl 17 . . . . . . . 8 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3433ex 412 . . . . . . 7 (𝑧 ∈ (topGen‘𝐵) → ((𝐹𝑃) ∈ 𝑧 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3534com23 86 . . . . . 6 (𝑧 ∈ (topGen‘𝐵) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3620, 35syl 17 . . . . 5 ((𝜑𝑧𝐾) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3736ralrimdva 3132 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3837anim2d 612 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
39 iscnp 23152 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
401, 2, 3, 39syl3anc 1373 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
4138, 40sylibrd 259 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
4218, 41impbid 212 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  topGenctg 17341  Topctop 22808  TopOnctopon 22825  TopBasesctb 22860   CnP ccnp 23140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cnp 23143
This theorem is referenced by:  txcnp  23535  ptcnp  23537  metcnp3  24455
  Copyright terms: Public domain W3C validator