MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcnp Structured version   Visualization version   GIF version

Theorem tgcnp 23138
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
tgcnp.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
tgcnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcnp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 tgcnp.5 . . . 4 (𝜑𝑃𝑋)
4 iscnp 23122 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
6 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
7 topontop 22798 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
82, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
96, 8eqeltrrd 2829 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
10 tgclb 22855 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
119, 10sylibr 234 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
12 bastg 22851 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1311, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1413, 6sseqtrrd 3973 . . . . 5 (𝜑𝐵𝐾)
15 ssralv 4004 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1614, 15syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
1716anim2d 612 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
185, 17sylbid 240 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
196eleq2d 2814 . . . . . . 7 (𝜑 → (𝑧𝐾𝑧 ∈ (topGen‘𝐵)))
2019biimpa 476 . . . . . 6 ((𝜑𝑧𝐾) → 𝑧 ∈ (topGen‘𝐵))
21 tg2 22850 . . . . . . . . 9 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧))
22 r19.29 3092 . . . . . . . . . . 11 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)))
23 sstr 3944 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ⊆ 𝑦𝑦𝑧) → (𝐹𝑥) ⊆ 𝑧)
2423expcom 413 . . . . . . . . . . . . . . . . 17 (𝑦𝑧 → ((𝐹𝑥) ⊆ 𝑦 → (𝐹𝑥) ⊆ 𝑧))
2524anim2d 612 . . . . . . . . . . . . . . . 16 (𝑦𝑧 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2625reximdv 3144 . . . . . . . . . . . . . . 15 (𝑦𝑧 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2726com12 32 . . . . . . . . . . . . . 14 (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
2827imim2i 16 . . . . . . . . . . . . 13 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑦 → (𝑦𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
2928imp32 418 . . . . . . . . . . . 12 ((((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3029rexlimivw 3126 . . . . . . . . . . 11 (∃𝑦𝐵 (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3122, 30syl 17 . . . . . . . . . 10 ((∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ∧ ∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))
3231expcom 413 . . . . . . . . 9 (∃𝑦𝐵 ((𝐹𝑃) ∈ 𝑦𝑦𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3321, 32syl 17 . . . . . . . 8 ((𝑧 ∈ (topGen‘𝐵) ∧ (𝐹𝑃) ∈ 𝑧) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))
3433ex 412 . . . . . . 7 (𝑧 ∈ (topGen‘𝐵) → ((𝐹𝑃) ∈ 𝑧 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3534com23 86 . . . . . 6 (𝑧 ∈ (topGen‘𝐵) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3620, 35syl 17 . . . . 5 ((𝜑𝑧𝐾) → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3736ralrimdva 3129 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧))))
3837anim2d 612 . . 3 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
39 iscnp 23122 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
401, 2, 3, 39syl3anc 1373 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧𝐾 ((𝐹𝑃) ∈ 𝑧 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑧)))))
4138, 40sylibrd 259 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
4218, 41impbid 212 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  topGenctg 17341  Topctop 22778  TopOnctopon 22795  TopBasesctb 22830   CnP ccnp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cnp 23113
This theorem is referenced by:  txcnp  23505  ptcnp  23507  metcnp3  24426
  Copyright terms: Public domain W3C validator