![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooordt | Structured version Visualization version GIF version |
Description: An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iooordt | β’ (π΄(,)π΅) β (ordTopβ β€ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . . . 7 β’ ran (π₯ β β* β¦ (π₯(,]+β)) = ran (π₯ β β* β¦ (π₯(,]+β)) | |
2 | eqid 2731 | . . . . . . 7 β’ ran (π₯ β β* β¦ (-β[,)π₯)) = ran (π₯ β β* β¦ (-β[,)π₯)) | |
3 | eqid 2731 | . . . . . . 7 β’ ran (,) = ran (,) | |
4 | 1, 2, 3 | leordtval 23037 | . . . . . 6 β’ (ordTopβ β€ ) = (topGenβ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,))) |
5 | letop 23030 | . . . . . 6 β’ (ordTopβ β€ ) β Top | |
6 | 4, 5 | eqeltrri 2829 | . . . . 5 β’ (topGenβ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,))) β Top |
7 | tgclb 22793 | . . . . 5 β’ (((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β TopBases β (topGenβ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,))) β Top) | |
8 | 6, 7 | mpbir 230 | . . . 4 β’ ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β TopBases |
9 | bastg 22789 | . . . 4 β’ (((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β TopBases β ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β (topGenβ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)))) | |
10 | 8, 9 | ax-mp 5 | . . 3 β’ ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β (topGenβ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,))) |
11 | 10, 4 | sseqtrri 4019 | . 2 β’ ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) β (ordTopβ β€ ) |
12 | ssun2 4173 | . . 3 β’ ran (,) β ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) | |
13 | ioorebas 13435 | . . 3 β’ (π΄(,)π΅) β ran (,) | |
14 | 12, 13 | sselii 3979 | . 2 β’ (π΄(,)π΅) β ((ran (π₯ β β* β¦ (π₯(,]+β)) βͺ ran (π₯ β β* β¦ (-β[,)π₯))) βͺ ran (,)) |
15 | 11, 14 | sselii 3979 | 1 β’ (π΄(,)π΅) β (ordTopβ β€ ) |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2105 βͺ cun 3946 β wss 3948 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7412 +βcpnf 11252 -βcmnf 11253 β*cxr 11254 β€ cle 11256 (,)cioo 13331 (,]cioc 13332 [,)cico 13333 topGenctg 17390 ordTopcordt 17452 Topctop 22715 TopBasesctb 22768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fi 9412 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-topgen 17396 df-ordt 17454 df-ps 18529 df-tsr 18530 df-top 22716 df-topon 22733 df-bases 22769 |
This theorem is referenced by: reordt 23042 xrtgioo 24642 xlimxrre 45008 |
Copyright terms: Public domain | W3C validator |