| Step | Hyp | Ref
| Expression |
| 1 | | oppcthinendc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | eqid 2734 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 3 | | oppcthinco.o |
. . . . . 6
⊢ 𝑂 = (oppCat‘𝐶) |
| 4 | | simplr1 1215 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ 𝐵) |
| 5 | | simplr2 1216 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ 𝐵) |
| 6 | | simplr3 1217 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ 𝐵) |
| 7 | 1, 2, 3, 4, 5, 6 | oppcco 17732 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)) |
| 8 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑) |
| 9 | 4, 5 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 10 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 11 | 10 | ne0d 4322 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) ≠ ∅) |
| 12 | | oppcthinendc.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
| 13 | 12 | necon1d 2953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥𝐻𝑦) ≠ ∅ → 𝑥 = 𝑦)) |
| 14 | 13 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ (𝑥𝐻𝑦) ≠ ∅) → 𝑥 = 𝑦) |
| 15 | 8, 9, 11, 14 | syl21anc 837 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑦) |
| 16 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 17 | 16 | ne0d 4322 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑧) ≠ ∅) |
| 18 | | neeq1 2993 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 ≠ 𝑧 ↔ 𝑦 ≠ 𝑧)) |
| 19 | | oveq1 7420 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥𝐻𝑧) = (𝑦𝐻𝑧)) |
| 20 | 19 | eqeq1d 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑥𝐻𝑧) = ∅ ↔ (𝑦𝐻𝑧) = ∅)) |
| 21 | 18, 20 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥 ≠ 𝑧 → (𝑥𝐻𝑧) = ∅) ↔ (𝑦 ≠ 𝑧 → (𝑦𝐻𝑧) = ∅))) |
| 22 | | neeq2 2994 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑧)) |
| 23 | | oveq2 7421 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → (𝑥𝐻𝑦) = (𝑥𝐻𝑧)) |
| 24 | 23 | eqeq1d 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑥𝐻𝑧) = ∅)) |
| 25 | 22, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → ((𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑥 ≠ 𝑧 → (𝑥𝐻𝑧) = ∅))) |
| 26 | 12 | anassrs 467 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
| 27 | 26 | ralrimiva 3133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
| 28 | 27 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
| 29 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
| 30 | 25, 28, 29 | rspcdva 3606 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ≠ 𝑧 → (𝑥𝐻𝑧) = ∅)) |
| 31 | 30 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 (𝑥 ≠ 𝑧 → (𝑥𝐻𝑧) = ∅)) |
| 32 | 8, 6, 31 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ∀𝑥 ∈ 𝐵 (𝑥 ≠ 𝑧 → (𝑥𝐻𝑧) = ∅)) |
| 33 | 21, 32, 5 | rspcdva 3606 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦 ≠ 𝑧 → (𝑦𝐻𝑧) = ∅)) |
| 34 | 33 | necon1d 2953 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ((𝑦𝐻𝑧) ≠ ∅ → 𝑦 = 𝑧)) |
| 35 | 17, 34 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 = 𝑧) |
| 36 | 15, 35 | eqtrd 2769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑧) |
| 37 | 36 | equcomd 2017 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 = 𝑥) |
| 38 | 37 | opeq1d 4859 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 〈𝑧, 𝑦〉 = 〈𝑥, 𝑦〉) |
| 39 | 38, 36 | oveq12d 7431 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (〈𝑧, 𝑦〉(comp‘𝐶)𝑥) = (〈𝑥, 𝑦〉(comp‘𝐶)𝑧)) |
| 40 | 15 | oveq1d 7428 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) = (𝑦𝐻𝑦)) |
| 41 | 10, 40 | eleqtrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑦𝐻𝑦)) |
| 42 | 35 | oveq2d 7429 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑦) = (𝑦𝐻𝑧)) |
| 43 | 16, 42 | eleqtrrd 2836 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑦)) |
| 44 | | oppcthinendc.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐶) |
| 45 | | oppcthinco.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| 46 | 8, 45 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝐶 ∈ ThinCat) |
| 47 | 5, 5, 41, 43, 1, 44, 46 | thincmo2 49127 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 = 𝑔) |
| 48 | 47 | equcomd 2017 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 = 𝑓) |
| 49 | 39, 47, 48 | oveq123d 7434 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
| 50 | 7, 49 | eqtr2d 2770 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓)) |
| 51 | 50 | ralrimivva 3189 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓)) |
| 52 | 51 | ralrimivvva 3192 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓)) |
| 53 | | eqid 2734 |
. . 3
⊢
(comp‘𝑂) =
(comp‘𝑂) |
| 54 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 55 | 3, 1 | oppcbas 17733 |
. . . 4
⊢ 𝐵 = (Base‘𝑂) |
| 56 | 55 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
| 57 | 3, 1, 44, 12 | oppcendc 48900 |
. . 3
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝑂)) |
| 58 | 2, 53, 44, 54, 56, 57 | comfeq 17721 |
. 2
⊢ (𝜑 →
((compf‘𝐶) = (compf‘𝑂) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝑂)𝑧)𝑓))) |
| 59 | 52, 58 | mpbird 257 |
1
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝑂)) |