Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcthinendcALT Structured version   Visualization version   GIF version

Theorem oppcthinendcALT 49410
Description: Alternate proof of oppcthinendc 49409. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
oppcthinco.o 𝑂 = (oppCat‘𝐶)
oppcthinco.c (𝜑𝐶 ∈ ThinCat)
oppcthinendc.b 𝐵 = (Base‘𝐶)
oppcthinendc.h 𝐻 = (Hom ‘𝐶)
oppcthinendc.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
Assertion
Ref Expression
oppcthinendcALT (𝜑 → (compf𝐶) = (compf𝑂))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦

Proof of Theorem oppcthinendcALT
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcthinendc.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2730 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3 oppcthinco.o . . . . . 6 𝑂 = (oppCat‘𝐶)
4 simplr1 1216 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝐵)
5 simplr2 1217 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝐵)
6 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝐵)
71, 2, 3, 4, 5, 6oppcco 17684 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
8 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
94, 5jca 511 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
10 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
1110ne0d 4307 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) ≠ ∅)
12 oppcthinendc.1 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
1312necon1d 2948 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥𝐻𝑦) ≠ ∅ → 𝑥 = 𝑦))
1413imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝐻𝑦) ≠ ∅) → 𝑥 = 𝑦)
158, 9, 11, 14syl21anc 837 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑦)
16 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
1716ne0d 4307 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑧) ≠ ∅)
18 neeq1 2988 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
19 oveq1 7396 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥𝐻𝑧) = (𝑦𝐻𝑧))
2019eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑥𝐻𝑧) = ∅ ↔ (𝑦𝐻𝑧) = ∅))
2118, 20imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝑧 → (𝑥𝐻𝑧) = ∅) ↔ (𝑦𝑧 → (𝑦𝐻𝑧) = ∅)))
22 neeq2 2989 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
23 oveq2 7397 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑥𝐻𝑦) = (𝑥𝐻𝑧))
2423eqeq1d 2732 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑥𝐻𝑧) = ∅))
2522, 24imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑥𝑧 → (𝑥𝐻𝑧) = ∅)))
2612anassrs 467 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
2726ralrimiva 3126 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → ∀𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
2827adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
29 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → 𝑧𝐵)
3025, 28, 29rspcdva 3592 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
3130ralrimiva 3126 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐵) → ∀𝑥𝐵 (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
328, 6, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ∀𝑥𝐵 (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
3321, 32, 5rspcdva 3592 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝑧 → (𝑦𝐻𝑧) = ∅))
3433necon1d 2948 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ((𝑦𝐻𝑧) ≠ ∅ → 𝑦 = 𝑧))
3517, 34mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 = 𝑧)
3615, 35eqtrd 2765 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑧)
3736equcomd 2019 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 = 𝑥)
3837opeq1d 4845 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3938, 36oveq12d 7407 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
4015oveq1d 7404 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) = (𝑦𝐻𝑦))
4110, 40eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑦𝐻𝑦))
4235oveq2d 7405 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑦) = (𝑦𝐻𝑧))
4316, 42eleqtrrd 2832 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑦))
44 oppcthinendc.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
45 oppcthinco.c . . . . . . . 8 (𝜑𝐶 ∈ ThinCat)
468, 45syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝐶 ∈ ThinCat)
475, 5, 41, 43, 1, 44, 46thincmo2 49395 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 = 𝑔)
4847equcomd 2019 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 = 𝑓)
4939, 47, 48oveq123d 7410 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
507, 49eqtr2d 2766 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
5150ralrimivva 3181 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
5251ralrimivvva 3184 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
53 eqid 2730 . . 3 (comp‘𝑂) = (comp‘𝑂)
541a1i 11 . . 3 (𝜑𝐵 = (Base‘𝐶))
553, 1oppcbas 17685 . . . 4 𝐵 = (Base‘𝑂)
5655a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑂))
573, 1, 44, 12oppcendc 48995 . . 3 (𝜑 → (Homf𝐶) = (Homf𝑂))
582, 53, 44, 54, 56, 57comfeq 17673 . 2 (𝜑 → ((compf𝐶) = (compf𝑂) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
5952, 58mpbird 257 1 (𝜑 → (compf𝐶) = (compf𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  c0 4298  cop 4597  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  compfccomf 17634  oppCatcoppc 17678  ThinCatcthinc 49386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-homf 17637  df-comf 17638  df-oppc 17679  df-thinc 49387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator