Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcthinendcALT Structured version   Visualization version   GIF version

Theorem oppcthinendcALT 49403
Description: Alternate proof of oppcthinendc 49402. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
oppcthinco.o 𝑂 = (oppCat‘𝐶)
oppcthinco.c (𝜑𝐶 ∈ ThinCat)
oppcthinendc.b 𝐵 = (Base‘𝐶)
oppcthinendc.h 𝐻 = (Hom ‘𝐶)
oppcthinendc.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
Assertion
Ref Expression
oppcthinendcALT (𝜑 → (compf𝐶) = (compf𝑂))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦

Proof of Theorem oppcthinendcALT
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcthinendc.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3 oppcthinco.o . . . . . 6 𝑂 = (oppCat‘𝐶)
4 simplr1 1216 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝐵)
5 simplr2 1217 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝐵)
6 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝐵)
71, 2, 3, 4, 5, 6oppcco 17654 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔))
8 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
94, 5jca 511 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
10 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
1110ne0d 4301 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) ≠ ∅)
12 oppcthinendc.1 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
1312necon1d 2947 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥𝐻𝑦) ≠ ∅ → 𝑥 = 𝑦))
1413imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝐻𝑦) ≠ ∅) → 𝑥 = 𝑦)
158, 9, 11, 14syl21anc 837 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑦)
16 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
1716ne0d 4301 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑧) ≠ ∅)
18 neeq1 2987 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
19 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥𝐻𝑧) = (𝑦𝐻𝑧))
2019eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑥𝐻𝑧) = ∅ ↔ (𝑦𝐻𝑧) = ∅))
2118, 20imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝑧 → (𝑥𝐻𝑧) = ∅) ↔ (𝑦𝑧 → (𝑦𝐻𝑧) = ∅)))
22 neeq2 2988 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
23 oveq2 7377 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑥𝐻𝑦) = (𝑥𝐻𝑧))
2423eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑥𝐻𝑧) = ∅))
2522, 24imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑥𝑧 → (𝑥𝐻𝑧) = ∅)))
2612anassrs 467 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
2726ralrimiva 3125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → ∀𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
2827adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
29 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → 𝑧𝐵)
3025, 28, 29rspcdva 3586 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐵) ∧ 𝑥𝐵) → (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
3130ralrimiva 3125 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐵) → ∀𝑥𝐵 (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
328, 6, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ∀𝑥𝐵 (𝑥𝑧 → (𝑥𝐻𝑧) = ∅))
3321, 32, 5rspcdva 3586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝑧 → (𝑦𝐻𝑧) = ∅))
3433necon1d 2947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ((𝑦𝐻𝑧) ≠ ∅ → 𝑦 = 𝑧))
3517, 34mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 = 𝑧)
3615, 35eqtrd 2764 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 = 𝑧)
3736equcomd 2019 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 = 𝑥)
3837opeq1d 4839 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3938, 36oveq12d 7387 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
4015oveq1d 7384 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑦) = (𝑦𝐻𝑦))
4110, 40eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑦𝐻𝑦))
4235oveq2d 7385 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐻𝑦) = (𝑦𝐻𝑧))
4316, 42eleqtrrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑦))
44 oppcthinendc.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
45 oppcthinco.c . . . . . . . 8 (𝜑𝐶 ∈ ThinCat)
468, 45syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝐶 ∈ ThinCat)
475, 5, 41, 43, 1, 44, 46thincmo2 49388 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 = 𝑔)
4847equcomd 2019 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 = 𝑓)
4939, 47, 48oveq123d 7390 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝐶)𝑥)𝑔) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
507, 49eqtr2d 2765 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
5150ralrimivva 3178 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
5251ralrimivvva 3181 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓))
53 eqid 2729 . . 3 (comp‘𝑂) = (comp‘𝑂)
541a1i 11 . . 3 (𝜑𝐵 = (Base‘𝐶))
553, 1oppcbas 17655 . . . 4 𝐵 = (Base‘𝑂)
5655a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑂))
573, 1, 44, 12oppcendc 48980 . . 3 (𝜑 → (Homf𝐶) = (Homf𝑂))
582, 53, 44, 54, 56, 57comfeq 17643 . 2 (𝜑 → ((compf𝐶) = (compf𝑂) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑂)𝑧)𝑓)))
5952, 58mpbird 257 1 (𝜑 → (compf𝐶) = (compf𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4292  cop 4591  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  compfccomf 17604  oppCatcoppc 17648  ThinCatcthinc 49379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-homf 17607  df-comf 17608  df-oppc 17649  df-thinc 49380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator