Proof of Theorem upfval3
| Step | Hyp | Ref
| Expression |
| 1 | | upfval.b |
. . 3
⊢ 𝐵 = (Base‘𝐷) |
| 2 | | upfval.c |
. . 3
⊢ 𝐶 = (Base‘𝐸) |
| 3 | | upfval.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
| 4 | | upfval.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
| 5 | | upfval.o |
. . 3
⊢ 𝑂 = (comp‘𝐸) |
| 6 | | upfval2.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| 7 | | upfval3.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | | df-br 5116 |
. . . 4
⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 9 | 7, 8 | sylib 218 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upfval2 49085 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚))}) |
| 11 | | relfunc 17830 |
. . . . . . . . . . 11
⊢ Rel
(𝐷 Func 𝐸) |
| 12 | 11 | brrelex12i 5701 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 13 | | op1stg 7989 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 15 | 14 | fveq1d 6867 |
. . . . . . . 8
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘〈𝐹, 𝐺〉)‘𝑥) = (𝐹‘𝑥)) |
| 16 | 15 | oveq2d 7410 |
. . . . . . 7
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥)) = (𝑊𝐽(𝐹‘𝑥))) |
| 17 | 16 | eleq2d 2815 |
. . . . . 6
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥)))) |
| 18 | 17 | anbi2d 630 |
. . . . 5
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥))) ↔ (𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))))) |
| 19 | 14 | fveq1d 6867 |
. . . . . . . 8
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘〈𝐹, 𝐺〉)‘𝑦) = (𝐹‘𝑦)) |
| 20 | 19 | oveq2d 7410 |
. . . . . . 7
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦)) = (𝑊𝐽(𝐹‘𝑦))) |
| 21 | 15 | opeq2d 4852 |
. . . . . . . . . . 11
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉 = 〈𝑊, (𝐹‘𝑥)〉) |
| 22 | 21, 19 | oveq12d 7412 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦)) = (〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))) |
| 23 | | op2ndg 7990 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) →
(2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 24 | 12, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 25 | 24 | oveqd 7411 |
. . . . . . . . . . 11
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦) = (𝑥𝐺𝑦)) |
| 26 | 25 | fveq1d 6867 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘)) |
| 27 | | eqidd 2731 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 𝑚 = 𝑚) |
| 28 | 22, 26, 27 | oveq123d 7415 |
. . . . . . . . 9
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚)) |
| 29 | 28 | eqeq2d 2741 |
. . . . . . . 8
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))) |
| 30 | 29 | reubidv 3375 |
. . . . . . 7
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))) |
| 31 | 20, 30 | raleqbidv 3322 |
. . . . . 6
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))) |
| 32 | 31 | ralbidv 3158 |
. . . . 5
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))) |
| 33 | 18, 32 | anbi12d 632 |
. . . 4
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚)))) |
| 34 | 33 | opabbidv 5181 |
. . 3
⊢ (𝐹(𝐷 Func 𝐸)𝐺 → {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚))} = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) |
| 35 | 7, 34 | syl 17 |
. 2
⊢ (𝜑 → {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘〈𝐹, 𝐺〉)𝑦)‘𝑘)(〈𝑊, ((1st ‘〈𝐹, 𝐺〉)‘𝑥)〉𝑂((1st ‘〈𝐹, 𝐺〉)‘𝑦))𝑚))} = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) |
| 36 | 10, 35 | eqtrd 2765 |
1
⊢ (𝜑 → (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑊𝐽(𝐹‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑥)〉𝑂(𝐹‘𝑦))𝑚))}) |