Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval3 Structured version   Visualization version   GIF version

Theorem upfval3 48856
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
upfval3 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐺,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval3
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 5152 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
101, 2, 3, 4, 5, 6, 9upfval2 48855 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))})
11 relfunc 17922 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
1211brrelex12i 5748 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
13 op1stg 8034 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1412, 13syl 17 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1514fveq1d 6916 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
1615oveq2d 7454 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) = (𝑊𝐽(𝐹𝑥)))
1716eleq2d 2827 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹𝑥))))
1817anbi2d 630 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥)))))
1914fveq1d 6916 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2019oveq2d 7454 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (𝑊𝐽(𝐹𝑦)))
2115opeq2d 4888 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩ = ⟨𝑊, (𝐹𝑥)⟩)
2221, 19oveq12d 7456 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)))
23 op2ndg 8035 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2412, 23syl 17 . . . . . . . . . . . 12 (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2524oveqd 7455 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
2625fveq1d 6916 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘))
27 eqidd 2738 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺𝑚 = 𝑚)
2822, 26, 27oveq123d 7459 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))
2928eqeq2d 2748 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3029reubidv 3398 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3120, 30raleqbidv 3346 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3231ralbidv 3178 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3318, 32anbi12d 632 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))))
3433opabbidv 5217 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
357, 34syl 17 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
3610, 35eqtrd 2777 1 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061  ∃!wreu 3378  Vcvv 3481  cop 4640   class class class wbr 5151  {copab 5213  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Basecbs 17254  Hom chom 17318  compcco 17319   Func cfunc 17914  UPcup 48851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-func 17918  df-up 48852
This theorem is referenced by:  isuplem  48857
  Copyright terms: Public domain W3C validator