Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval3 Structured version   Visualization version   GIF version

Theorem upfval3 49209
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
upfval3 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐺,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval3
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 5092 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
101, 2, 3, 4, 5, 6, 9upfval2 49208 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))})
11 relfunc 17766 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
1211brrelex12i 5671 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
13 op1stg 7933 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1412, 13syl 17 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1514fveq1d 6824 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
1615oveq2d 7362 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) = (𝑊𝐽(𝐹𝑥)))
1716eleq2d 2817 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹𝑥))))
1817anbi2d 630 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥)))))
1914fveq1d 6824 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2019oveq2d 7362 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (𝑊𝐽(𝐹𝑦)))
2115opeq2d 4832 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩ = ⟨𝑊, (𝐹𝑥)⟩)
2221, 19oveq12d 7364 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)))
23 op2ndg 7934 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2412, 23syl 17 . . . . . . . . . . . 12 (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2524oveqd 7363 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
2625fveq1d 6824 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘))
27 eqidd 2732 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺𝑚 = 𝑚)
2822, 26, 27oveq123d 7367 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))
2928eqeq2d 2742 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3029reubidv 3362 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3120, 30raleqbidv 3312 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3231ralbidv 3155 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3318, 32anbi12d 632 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))))
3433opabbidv 5157 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
357, 34syl 17 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
3610, 35eqtrd 2766 1 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  cop 4582   class class class wbr 5091  {copab 5153  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-up 49205
This theorem is referenced by:  isuplem  49210
  Copyright terms: Public domain W3C validator