Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval3 Structured version   Visualization version   GIF version

Theorem upfval3 49164
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
upfval3 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐺,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval3
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 5096 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
101, 2, 3, 4, 5, 6, 9upfval2 49163 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))})
11 relfunc 17787 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
1211brrelex12i 5678 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
13 op1stg 7943 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1412, 13syl 17 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1514fveq1d 6828 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
1615oveq2d 7369 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) = (𝑊𝐽(𝐹𝑥)))
1716eleq2d 2814 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹𝑥))))
1817anbi2d 630 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥)))))
1914fveq1d 6828 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2019oveq2d 7369 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (𝑊𝐽(𝐹𝑦)))
2115opeq2d 4834 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩ = ⟨𝑊, (𝐹𝑥)⟩)
2221, 19oveq12d 7371 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)))
23 op2ndg 7944 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2412, 23syl 17 . . . . . . . . . . . 12 (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2524oveqd 7370 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
2625fveq1d 6828 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘))
27 eqidd 2730 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺𝑚 = 𝑚)
2822, 26, 27oveq123d 7374 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))
2928eqeq2d 2740 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3029reubidv 3363 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3120, 30raleqbidv 3310 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3231ralbidv 3152 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3318, 32anbi12d 632 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))))
3433opabbidv 5161 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
357, 34syl 17 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
3610, 35eqtrd 2764 1 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  Vcvv 3438  cop 4585   class class class wbr 5095  {copab 5157  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-func 17783  df-up 49160
This theorem is referenced by:  isuplem  49165
  Copyright terms: Public domain W3C validator