Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval3 Structured version   Visualization version   GIF version

Theorem upfval3 49167
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
upfval3 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐺,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval3
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 5108 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
101, 2, 3, 4, 5, 6, 9upfval2 49166 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))})
11 relfunc 17824 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
1211brrelex12i 5693 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
13 op1stg 7980 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1412, 13syl 17 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1514fveq1d 6860 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
1615oveq2d 7403 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) = (𝑊𝐽(𝐹𝑥)))
1716eleq2d 2814 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹𝑥))))
1817anbi2d 630 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥)))))
1914fveq1d 6860 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2019oveq2d 7403 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (𝑊𝐽(𝐹𝑦)))
2115opeq2d 4844 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩ = ⟨𝑊, (𝐹𝑥)⟩)
2221, 19oveq12d 7405 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)))
23 op2ndg 7981 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2412, 23syl 17 . . . . . . . . . . . 12 (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2524oveqd 7404 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
2625fveq1d 6860 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘))
27 eqidd 2730 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺𝑚 = 𝑚)
2822, 26, 27oveq123d 7408 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))
2928eqeq2d 2740 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3029reubidv 3372 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3120, 30raleqbidv 3319 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3231ralbidv 3156 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3318, 32anbi12d 632 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))))
3433opabbidv 5173 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
357, 34syl 17 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
3610, 35eqtrd 2764 1 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  Vcvv 3447  cop 4595   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-func 17820  df-up 49163
This theorem is referenced by:  isuplem  49168
  Copyright terms: Public domain W3C validator