Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval3 Structured version   Visualization version   GIF version

Theorem upfval3 48890
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
upfval2.w (𝜑𝑊𝐶)
upfval3.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
upfval3 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑔,𝑘,𝑚,𝑥,𝑦   𝐶,𝑔,𝑘,𝑚,𝑥,𝑦   𝐷,𝑔,𝑘,𝑚,𝑥,𝑦   𝑔,𝐸,𝑘,𝑚,𝑥,𝑦   𝑔,𝐹,𝑘,𝑚,𝑥,𝑦   𝑔,𝐺,𝑘,𝑚,𝑥,𝑦   𝑔,𝐻,𝑘,𝑚,𝑥,𝑦   𝑔,𝐽,𝑘,𝑚,𝑥,𝑦   𝑔,𝑂,𝑘,𝑚,𝑥,𝑦   𝑔,𝑊,𝑘,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑔,𝑘)

Proof of Theorem upfval3
StepHypRef Expression
1 upfval.b . . 3 𝐵 = (Base‘𝐷)
2 upfval.c . . 3 𝐶 = (Base‘𝐸)
3 upfval.h . . 3 𝐻 = (Hom ‘𝐷)
4 upfval.j . . 3 𝐽 = (Hom ‘𝐸)
5 upfval.o . . 3 𝑂 = (comp‘𝐸)
6 upfval2.w . . 3 (𝜑𝑊𝐶)
7 upfval3.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 5126 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
101, 2, 3, 4, 5, 6, 9upfval2 48889 . 2 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))})
11 relfunc 17879 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
1211brrelex12i 5722 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
13 op1stg 8009 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1412, 13syl 17 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1514fveq1d 6889 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
1615oveq2d 7430 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) = (𝑊𝐽(𝐹𝑥)))
1716eleq2d 2819 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)) ↔ 𝑚 ∈ (𝑊𝐽(𝐹𝑥))))
1817anbi2d 630 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥)))))
1914fveq1d 6889 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2019oveq2d 7430 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (𝑊𝐽(𝐹𝑦)))
2115opeq2d 4862 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩ = ⟨𝑊, (𝐹𝑥)⟩)
2221, 19oveq12d 7432 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → (⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = (⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦)))
23 op2ndg 8010 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2412, 23syl 17 . . . . . . . . . . . 12 (𝐹(𝐷 Func 𝐸)𝐺 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2524oveqd 7431 . . . . . . . . . . 11 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
2625fveq1d 6889 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 → ((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘) = ((𝑥𝐺𝑦)‘𝑘))
27 eqidd 2735 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺𝑚 = 𝑚)
2822, 26, 27oveq123d 7435 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))
2928eqeq2d 2745 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 → (𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3029reubidv 3382 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 → (∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3120, 30raleqbidv 3330 . . . . . 6 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3231ralbidv 3165 . . . . 5 (𝐹(𝐷 Func 𝐸)𝐺 → (∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚)))
3318, 32anbi12d 632 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 → (((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))))
3433opabbidv 5191 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
357, 34syl 17 . 2 (𝜑 → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)‘𝑘)(⟨𝑊, ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)⟩𝑂((1st ‘⟨𝐹, 𝐺⟩)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
3610, 35eqtrd 2769 1 (𝜑 → (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑊𝐽(𝐹𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑥)⟩𝑂(𝐹𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  Vcvv 3464  cop 4614   class class class wbr 5125  {copab 5187  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17875  df-up 48886
This theorem is referenced by:  isuplem  48891
  Copyright terms: Public domain W3C validator