| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr0eop | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 29245, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| upgr0eop | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5409 | . . 3 ⊢ 〈𝑉, ∅〉 ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ V) |
| 3 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 4 | opiedgfv 29006 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∅ ∈ V) → (iEdg‘〈𝑉, ∅〉) = ∅) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ∅〉) = ∅) |
| 6 | 2, 5 | upgr0e 29110 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 〈cop 4583 ‘cfv 6489 iEdgciedg 28996 UPGraphcupgr 29079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-i2m1 11085 ax-1ne0 11086 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-2nd 7931 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-2 12199 df-iedg 28998 df-upgr 29081 df-umgr 29082 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |