MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr0eop Structured version   Visualization version   GIF version

Theorem upgr0eop 26885
Description: The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 27014, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.)
Assertion
Ref Expression
upgr0eop (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)

Proof of Theorem upgr0eop
StepHypRef Expression
1 opex 5342 . . 3 𝑉, ∅⟩ ∈ V
21a1i 11 . 2 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ V)
3 0ex 5197 . . 3 ∅ ∈ V
4 opiedgfv 26778 . . 3 ((𝑉𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅)
53, 4mpan2 689 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅)
62, 5upgr0e 26882 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3486  c0 4279  cop 4559  cfv 6341  iEdgciedg 26768  UPGraphcupgr 26851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-i2m1 10591  ax-1ne0 10592  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-2nd 7676  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-2 11687  df-iedg 26770  df-upgr 26853  df-umgr 26854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator