Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr0eop | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 27491, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
upgr0eop | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5372 | . . 3 ⊢ 〈𝑉, ∅〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ V) |
3 | 0ex 5224 | . . 3 ⊢ ∅ ∈ V | |
4 | opiedgfv 27255 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∅ ∈ V) → (iEdg‘〈𝑉, ∅〉) = ∅) | |
5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ∅〉) = ∅) |
6 | 2, 5 | upgr0e 27359 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 〈cop 4564 ‘cfv 6415 iEdgciedg 27245 UPGraphcupgr 27328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-i2m1 10845 ax-1ne0 10846 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-2nd 7802 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-2 11941 df-iedg 27247 df-upgr 27330 df-umgr 27331 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |