![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr0eop | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a pseudograph. The empty graph is actually a simple graph, see usgr0eop 28771, and therefore also a multigraph (𝐺 ∈ UMGraph). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
upgr0eop | ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . 3 ⊢ ⟨𝑉, ∅⟩ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ V) |
3 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
4 | opiedgfv 28535 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅) | |
5 | 3, 4 | mpan2 688 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅) |
6 | 2, 5 | upgr0e 28639 | 1 ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ⟨cop 4634 ‘cfv 6543 iEdgciedg 28525 UPGraphcupgr 28608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-i2m1 11182 ax-1ne0 11183 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-2 12280 df-iedg 28527 df-upgr 28610 df-umgr 28611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |