Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem1 Structured version   Visualization version   GIF version

Theorem vdwlem1 16385
 Description: Lemma for vdw 16398. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem1.r (𝜑𝑅 ∈ Fin)
vdwlem1.k (𝜑𝐾 ∈ ℕ)
vdwlem1.w (𝜑𝑊 ∈ ℕ)
vdwlem1.f (𝜑𝐹:(1...𝑊)⟶𝑅)
vdwlem1.a (𝜑𝐴 ∈ ℕ)
vdwlem1.m (𝜑𝑀 ∈ ℕ)
vdwlem1.d (𝜑𝐷:(1...𝑀)⟶ℕ)
vdwlem1.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
vdwlem1.i (𝜑𝐼 ∈ (1...𝑀))
vdwlem1.e (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
Assertion
Ref Expression
vdwlem1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Distinct variable groups:   𝐴,𝑖   𝐷,𝑖   𝑖,𝐼   𝑖,𝐾   𝑖,𝐹   𝑖,𝑀   𝜑,𝑖   𝑅,𝑖   𝑖,𝑊

Proof of Theorem vdwlem1
Dummy variables 𝑎 𝑐 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem1.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 vdwlem1.d . . . . 5 (𝜑𝐷:(1...𝑀)⟶ℕ)
3 vdwlem1.i . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
42, 3ffvelrnd 6849 . . . 4 (𝜑 → (𝐷𝐼) ∈ ℕ)
5 vdwlem1.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
65nnnn0d 12007 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
7 vdwapun 16378 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
86, 1, 4, 7syl3anc 1368 . . . . 5 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
91nnred 11702 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
10 vdwlem1.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
11 nnuz 12334 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2862 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
13 eluzfz1 12976 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ (1...𝑀))
152, 14ffvelrnd 6849 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℕ)
161, 15nnaddcld 11739 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℕ)
1716nnred 11702 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℝ)
18 vdwlem1.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℕ)
1918nnred 11702 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
2015nnrpd 12483 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℝ+)
219, 20ltaddrpd 12518 . . . . . . . . . . 11 (𝜑𝐴 < (𝐴 + (𝐷‘1)))
229, 17, 21ltled 10839 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + (𝐷‘1)))
23 fveq2 6663 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝐷𝑖) = (𝐷‘1))
2423oveq2d 7172 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷‘1)))
2524eleq1d 2836 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝐴 + (𝐷𝑖)) ∈ (1...𝑊) ↔ (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
26 vdwlem1.s . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
2726r19.21bi 3137 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
28 cnvimass 5926 . . . . . . . . . . . . . . . . 17 (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ dom 𝐹
29 vdwlem1.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:(1...𝑊)⟶𝑅)
3028, 29fssdm 6520 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3130adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3227, 31sstrd 3904 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (1...𝑊))
33 nnm1nn0 11988 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
345, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℕ0)
35 nn0uz 12333 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
3634, 35eleqtrdi 2862 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 − 1) ∈ (ℤ‘0))
37 eluzfz1 12976 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝐾 − 1)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0...(𝐾 − 1)))
3938adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ∈ (0...(𝐾 − 1)))
402ffvelrnda 6848 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℕ)
4140nncnd 11703 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℂ)
4241mul02d 10889 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (0 · (𝐷𝑖)) = 0)
4342oveq2d 7172 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + 0))
441adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 ∈ ℕ)
4544, 40nnaddcld 11739 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℕ)
4645nncnd 11703 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℂ)
4746addid1d 10891 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + 0) = (𝐴 + (𝐷𝑖)))
4843, 47eqtr2d 2794 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
49 oveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑚 = 0 → (𝑚 · (𝐷𝑖)) = (0 · (𝐷𝑖)))
5049oveq2d 7172 . . . . . . . . . . . . . . . . 17 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
5150rspceeqv 3558 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
5239, 48, 51syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
535adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
5453nnnn0d 12007 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
55 vdwapval 16377 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℕ0 ∧ (𝐴 + (𝐷𝑖)) ∈ ℕ ∧ (𝐷𝑖) ∈ ℕ) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5654, 45, 40, 55syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5752, 56mpbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)))
5832, 57sseldd 3895 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
5958ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
6025, 59, 14rspcdva 3545 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ (1...𝑊))
61 elfzle2 12973 . . . . . . . . . . 11 ((𝐴 + (𝐷‘1)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ≤ 𝑊)
6260, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ≤ 𝑊)
639, 17, 19, 22, 62letrd 10848 . . . . . . . . 9 (𝜑𝐴𝑊)
641, 11eleqtrdi 2862 . . . . . . . . . 10 (𝜑𝐴 ∈ (ℤ‘1))
6518nnzd 12138 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
66 elfz5 12961 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘1) ∧ 𝑊 ∈ ℤ) → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6764, 65, 66syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6863, 67mpbird 260 . . . . . . . 8 (𝜑𝐴 ∈ (1...𝑊))
69 eqidd 2759 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹𝐴))
70 ffn 6503 . . . . . . . . 9 (𝐹:(1...𝑊)⟶𝑅𝐹 Fn (1...𝑊))
71 fniniseg 6826 . . . . . . . . 9 (𝐹 Fn (1...𝑊) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7229, 70, 713syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7368, 69, 72mpbir2and 712 . . . . . . 7 (𝜑𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
7473snssd 4702 . . . . . 6 (𝜑 → {𝐴} ⊆ (𝐹 “ {(𝐹𝐴)}))
75 fveq2 6663 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐷𝑖) = (𝐷𝐼))
7675oveq2d 7172 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷𝐼)))
7776, 75oveq12d 7174 . . . . . . . . 9 (𝑖 = 𝐼 → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) = ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)))
7876fveq2d 6667 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐹‘(𝐴 + (𝐷𝑖))) = (𝐹‘(𝐴 + (𝐷𝐼))))
7978sneqd 4537 . . . . . . . . . 10 (𝑖 = 𝐼 → {(𝐹‘(𝐴 + (𝐷𝑖)))} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8079imaeq2d 5906 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8177, 80sseq12d 3927 . . . . . . . 8 (𝑖 = 𝐼 → (((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ↔ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
8281, 26, 3rspcdva 3545 . . . . . . 7 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
83 vdwlem1.e . . . . . . . . 9 (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
8483sneqd 4537 . . . . . . . 8 (𝜑 → {(𝐹𝐴)} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8584imaeq2d 5906 . . . . . . 7 (𝜑 → (𝐹 “ {(𝐹𝐴)}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8682, 85sseqtrrd 3935 . . . . . 6 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
8774, 86unssd 4093 . . . . 5 (𝜑 → ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))) ⊆ (𝐹 “ {(𝐹𝐴)}))
888, 87eqsstrd 3932 . . . 4 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
89 oveq1 7163 . . . . . 6 (𝑎 = 𝐴 → (𝑎(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))𝑑))
9089sseq1d 3925 . . . . 5 (𝑎 = 𝐴 → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
91 oveq2 7164 . . . . . 6 (𝑑 = (𝐷𝐼) → (𝐴(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)))
9291sseq1d 3925 . . . . 5 (𝑑 = (𝐷𝐼) → ((𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})))
9390, 92rspc2ev 3555 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ ∧ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
941, 4, 88, 93syl3anc 1368 . . 3 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
95 fvex 6676 . . . 4 (𝐹𝐴) ∈ V
96 sneq 4535 . . . . . . 7 (𝑐 = (𝐹𝐴) → {𝑐} = {(𝐹𝐴)})
9796imaeq2d 5906 . . . . . 6 (𝑐 = (𝐹𝐴) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝐴)}))
9897sseq2d 3926 . . . . 5 (𝑐 = (𝐹𝐴) → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
99982rexbidv 3224 . . . 4 (𝑐 = (𝐹𝐴) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
10095, 99spcev 3527 . . 3 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
10194, 100syl 17 . 2 (𝜑 → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
102 ovex 7189 . . 3 (1...𝑊) ∈ V
103 peano2nn0 11987 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1046, 103syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ ℕ0)
105102, 104, 29vdwmc 16382 . 2 (𝜑 → ((𝐾 + 1) MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐})))
106101, 105mpbird 260 1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ∪ cun 3858   ⊆ wss 3860  {csn 4525   class class class wbr 5036  ◡ccnv 5527   “ cima 5531   Fn wfn 6335  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156  Fincfn 8540  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593   ≤ cle 10727   − cmin 10921  ℕcn 11687  ℕ0cn0 11947  ℤcz 12033  ℤ≥cuz 12295  ...cfz 12952  APcvdwa 16369   MonoAP cvdwm 16370 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fz 12953  df-vdwap 16372  df-vdwmc 16373 This theorem is referenced by:  vdwlem6  16390
 Copyright terms: Public domain W3C validator