MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem1 Structured version   Visualization version   GIF version

Theorem vdwlem1 16309
Description: Lemma for vdw 16322. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem1.r (𝜑𝑅 ∈ Fin)
vdwlem1.k (𝜑𝐾 ∈ ℕ)
vdwlem1.w (𝜑𝑊 ∈ ℕ)
vdwlem1.f (𝜑𝐹:(1...𝑊)⟶𝑅)
vdwlem1.a (𝜑𝐴 ∈ ℕ)
vdwlem1.m (𝜑𝑀 ∈ ℕ)
vdwlem1.d (𝜑𝐷:(1...𝑀)⟶ℕ)
vdwlem1.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
vdwlem1.i (𝜑𝐼 ∈ (1...𝑀))
vdwlem1.e (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
Assertion
Ref Expression
vdwlem1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Distinct variable groups:   𝐴,𝑖   𝐷,𝑖   𝑖,𝐼   𝑖,𝐾   𝑖,𝐹   𝑖,𝑀   𝜑,𝑖   𝑅,𝑖   𝑖,𝑊

Proof of Theorem vdwlem1
Dummy variables 𝑎 𝑐 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem1.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 vdwlem1.d . . . . 5 (𝜑𝐷:(1...𝑀)⟶ℕ)
3 vdwlem1.i . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
42, 3ffvelrnd 6845 . . . 4 (𝜑 → (𝐷𝐼) ∈ ℕ)
5 vdwlem1.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
65nnnn0d 11947 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
7 vdwapun 16302 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
86, 1, 4, 7syl3anc 1365 . . . . 5 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
91nnred 11645 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
10 vdwlem1.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
11 nnuz 12273 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2921 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
13 eluzfz1 12906 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ (1...𝑀))
152, 14ffvelrnd 6845 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℕ)
161, 15nnaddcld 11681 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℕ)
1716nnred 11645 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℝ)
18 vdwlem1.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℕ)
1918nnred 11645 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
2015nnrpd 12421 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℝ+)
219, 20ltaddrpd 12456 . . . . . . . . . . 11 (𝜑𝐴 < (𝐴 + (𝐷‘1)))
229, 17, 21ltled 10780 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + (𝐷‘1)))
23 fveq2 6663 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝐷𝑖) = (𝐷‘1))
2423oveq2d 7164 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷‘1)))
2524eleq1d 2895 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝐴 + (𝐷𝑖)) ∈ (1...𝑊) ↔ (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
26 vdwlem1.s . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
2726r19.21bi 3206 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
28 cnvimass 5942 . . . . . . . . . . . . . . . . 17 (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ dom 𝐹
29 vdwlem1.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:(1...𝑊)⟶𝑅)
3028, 29fssdm 6523 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3130adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3227, 31sstrd 3975 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (1...𝑊))
33 nnm1nn0 11930 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
345, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℕ0)
35 nn0uz 12272 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
3634, 35eleqtrdi 2921 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 − 1) ∈ (ℤ‘0))
37 eluzfz1 12906 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝐾 − 1)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0...(𝐾 − 1)))
3938adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ∈ (0...(𝐾 − 1)))
402ffvelrnda 6844 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℕ)
4140nncnd 11646 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℂ)
4241mul02d 10830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (0 · (𝐷𝑖)) = 0)
4342oveq2d 7164 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + 0))
441adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 ∈ ℕ)
4544, 40nnaddcld 11681 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℕ)
4645nncnd 11646 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℂ)
4746addid1d 10832 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + 0) = (𝐴 + (𝐷𝑖)))
4843, 47eqtr2d 2855 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
49 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑚 = 0 → (𝑚 · (𝐷𝑖)) = (0 · (𝐷𝑖)))
5049oveq2d 7164 . . . . . . . . . . . . . . . . 17 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
5150rspceeqv 3636 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
5239, 48, 51syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
535adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
5453nnnn0d 11947 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
55 vdwapval 16301 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℕ0 ∧ (𝐴 + (𝐷𝑖)) ∈ ℕ ∧ (𝐷𝑖) ∈ ℕ) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5654, 45, 40, 55syl3anc 1365 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5752, 56mpbird 259 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)))
5832, 57sseldd 3966 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
5958ralrimiva 3180 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
6025, 59, 14rspcdva 3623 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ (1...𝑊))
61 elfzle2 12903 . . . . . . . . . . 11 ((𝐴 + (𝐷‘1)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ≤ 𝑊)
6260, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ≤ 𝑊)
639, 17, 19, 22, 62letrd 10789 . . . . . . . . 9 (𝜑𝐴𝑊)
641, 11eleqtrdi 2921 . . . . . . . . . 10 (𝜑𝐴 ∈ (ℤ‘1))
6518nnzd 12078 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
66 elfz5 12892 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘1) ∧ 𝑊 ∈ ℤ) → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6764, 65, 66syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6863, 67mpbird 259 . . . . . . . 8 (𝜑𝐴 ∈ (1...𝑊))
69 eqidd 2820 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹𝐴))
70 ffn 6507 . . . . . . . . 9 (𝐹:(1...𝑊)⟶𝑅𝐹 Fn (1...𝑊))
71 fniniseg 6823 . . . . . . . . 9 (𝐹 Fn (1...𝑊) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7229, 70, 713syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7368, 69, 72mpbir2and 711 . . . . . . 7 (𝜑𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
7473snssd 4734 . . . . . 6 (𝜑 → {𝐴} ⊆ (𝐹 “ {(𝐹𝐴)}))
75 fveq2 6663 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐷𝑖) = (𝐷𝐼))
7675oveq2d 7164 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷𝐼)))
7776, 75oveq12d 7166 . . . . . . . . 9 (𝑖 = 𝐼 → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) = ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)))
7876fveq2d 6667 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐹‘(𝐴 + (𝐷𝑖))) = (𝐹‘(𝐴 + (𝐷𝐼))))
7978sneqd 4571 . . . . . . . . . 10 (𝑖 = 𝐼 → {(𝐹‘(𝐴 + (𝐷𝑖)))} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8079imaeq2d 5922 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8177, 80sseq12d 3998 . . . . . . . 8 (𝑖 = 𝐼 → (((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ↔ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
8281, 26, 3rspcdva 3623 . . . . . . 7 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
83 vdwlem1.e . . . . . . . . 9 (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
8483sneqd 4571 . . . . . . . 8 (𝜑 → {(𝐹𝐴)} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8584imaeq2d 5922 . . . . . . 7 (𝜑 → (𝐹 “ {(𝐹𝐴)}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8682, 85sseqtrrd 4006 . . . . . 6 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
8774, 86unssd 4160 . . . . 5 (𝜑 → ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))) ⊆ (𝐹 “ {(𝐹𝐴)}))
888, 87eqsstrd 4003 . . . 4 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
89 oveq1 7155 . . . . . 6 (𝑎 = 𝐴 → (𝑎(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))𝑑))
9089sseq1d 3996 . . . . 5 (𝑎 = 𝐴 → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
91 oveq2 7156 . . . . . 6 (𝑑 = (𝐷𝐼) → (𝐴(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)))
9291sseq1d 3996 . . . . 5 (𝑑 = (𝐷𝐼) → ((𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})))
9390, 92rspc2ev 3633 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ ∧ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
941, 4, 88, 93syl3anc 1365 . . 3 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
95 fvex 6676 . . . 4 (𝐹𝐴) ∈ V
96 sneq 4569 . . . . . . 7 (𝑐 = (𝐹𝐴) → {𝑐} = {(𝐹𝐴)})
9796imaeq2d 5922 . . . . . 6 (𝑐 = (𝐹𝐴) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝐴)}))
9897sseq2d 3997 . . . . 5 (𝑐 = (𝐹𝐴) → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
99982rexbidv 3298 . . . 4 (𝑐 = (𝐹𝐴) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
10095, 99spcev 3605 . . 3 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
10194, 100syl 17 . 2 (𝜑 → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
102 ovex 7181 . . 3 (1...𝑊) ∈ V
103 peano2nn0 11929 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1046, 103syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ ℕ0)
105102, 104, 29vdwmc 16306 . 2 (𝜑 → ((𝐾 + 1) MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐})))
106101, 105mpbird 259 1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wex 1773  wcel 2107  wral 3136  wrex 3137  cun 3932  wss 3934  {csn 4559   class class class wbr 5057  ccnv 5547  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  Fincfn 8501  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cle 10668  cmin 10862  cn 11630  0cn0 11889  cz 11973  cuz 12235  ...cfz 12884  APcvdwa 16293   MonoAP cvdwm 16294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-vdwap 16296  df-vdwmc 16297
This theorem is referenced by:  vdwlem6  16314
  Copyright terms: Public domain W3C validator