MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem1 Structured version   Visualization version   GIF version

Theorem vdwlem1 17015
Description: Lemma for vdw 17028. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem1.r (𝜑𝑅 ∈ Fin)
vdwlem1.k (𝜑𝐾 ∈ ℕ)
vdwlem1.w (𝜑𝑊 ∈ ℕ)
vdwlem1.f (𝜑𝐹:(1...𝑊)⟶𝑅)
vdwlem1.a (𝜑𝐴 ∈ ℕ)
vdwlem1.m (𝜑𝑀 ∈ ℕ)
vdwlem1.d (𝜑𝐷:(1...𝑀)⟶ℕ)
vdwlem1.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
vdwlem1.i (𝜑𝐼 ∈ (1...𝑀))
vdwlem1.e (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
Assertion
Ref Expression
vdwlem1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Distinct variable groups:   𝐴,𝑖   𝐷,𝑖   𝑖,𝐼   𝑖,𝐾   𝑖,𝐹   𝑖,𝑀   𝜑,𝑖   𝑅,𝑖   𝑖,𝑊

Proof of Theorem vdwlem1
Dummy variables 𝑎 𝑐 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem1.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 vdwlem1.d . . . . 5 (𝜑𝐷:(1...𝑀)⟶ℕ)
3 vdwlem1.i . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
42, 3ffvelcdmd 7105 . . . 4 (𝜑 → (𝐷𝐼) ∈ ℕ)
5 vdwlem1.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
65nnnn0d 12585 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
7 vdwapun 17008 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
86, 1, 4, 7syl3anc 1370 . . . . 5 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
91nnred 12279 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
10 vdwlem1.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
11 nnuz 12919 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2849 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
13 eluzfz1 13568 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ (1...𝑀))
152, 14ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℕ)
161, 15nnaddcld 12316 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℕ)
1716nnred 12279 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℝ)
18 vdwlem1.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℕ)
1918nnred 12279 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
2015nnrpd 13073 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℝ+)
219, 20ltaddrpd 13108 . . . . . . . . . . 11 (𝜑𝐴 < (𝐴 + (𝐷‘1)))
229, 17, 21ltled 11407 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + (𝐷‘1)))
23 fveq2 6907 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝐷𝑖) = (𝐷‘1))
2423oveq2d 7447 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷‘1)))
2524eleq1d 2824 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝐴 + (𝐷𝑖)) ∈ (1...𝑊) ↔ (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
26 vdwlem1.s . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
2726r19.21bi 3249 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
28 cnvimass 6102 . . . . . . . . . . . . . . . . 17 (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ dom 𝐹
29 vdwlem1.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:(1...𝑊)⟶𝑅)
3028, 29fssdm 6756 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3227, 31sstrd 4006 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (1...𝑊))
33 nnm1nn0 12565 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
345, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℕ0)
35 nn0uz 12918 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
3634, 35eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 − 1) ∈ (ℤ‘0))
37 eluzfz1 13568 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝐾 − 1)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0...(𝐾 − 1)))
3938adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ∈ (0...(𝐾 − 1)))
402ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℕ)
4140nncnd 12280 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℂ)
4241mul02d 11457 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (0 · (𝐷𝑖)) = 0)
4342oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + 0))
441adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 ∈ ℕ)
4544, 40nnaddcld 12316 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℕ)
4645nncnd 12280 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℂ)
4746addridd 11459 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + 0) = (𝐴 + (𝐷𝑖)))
4843, 47eqtr2d 2776 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
49 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑚 = 0 → (𝑚 · (𝐷𝑖)) = (0 · (𝐷𝑖)))
5049oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
5150rspceeqv 3645 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
5239, 48, 51syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
535adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
5453nnnn0d 12585 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
55 vdwapval 17007 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℕ0 ∧ (𝐴 + (𝐷𝑖)) ∈ ℕ ∧ (𝐷𝑖) ∈ ℕ) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5654, 45, 40, 55syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5752, 56mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)))
5832, 57sseldd 3996 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
5958ralrimiva 3144 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
6025, 59, 14rspcdva 3623 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ (1...𝑊))
61 elfzle2 13565 . . . . . . . . . . 11 ((𝐴 + (𝐷‘1)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ≤ 𝑊)
6260, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ≤ 𝑊)
639, 17, 19, 22, 62letrd 11416 . . . . . . . . 9 (𝜑𝐴𝑊)
641, 11eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝐴 ∈ (ℤ‘1))
6518nnzd 12638 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
66 elfz5 13553 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘1) ∧ 𝑊 ∈ ℤ) → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6764, 65, 66syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
6863, 67mpbird 257 . . . . . . . 8 (𝜑𝐴 ∈ (1...𝑊))
69 eqidd 2736 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹𝐴))
70 ffn 6737 . . . . . . . . 9 (𝐹:(1...𝑊)⟶𝑅𝐹 Fn (1...𝑊))
71 fniniseg 7080 . . . . . . . . 9 (𝐹 Fn (1...𝑊) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7229, 70, 713syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7368, 69, 72mpbir2and 713 . . . . . . 7 (𝜑𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
7473snssd 4814 . . . . . 6 (𝜑 → {𝐴} ⊆ (𝐹 “ {(𝐹𝐴)}))
75 fveq2 6907 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐷𝑖) = (𝐷𝐼))
7675oveq2d 7447 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷𝐼)))
7776, 75oveq12d 7449 . . . . . . . . 9 (𝑖 = 𝐼 → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) = ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)))
7876fveq2d 6911 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐹‘(𝐴 + (𝐷𝑖))) = (𝐹‘(𝐴 + (𝐷𝐼))))
7978sneqd 4643 . . . . . . . . . 10 (𝑖 = 𝐼 → {(𝐹‘(𝐴 + (𝐷𝑖)))} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8079imaeq2d 6080 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8177, 80sseq12d 4029 . . . . . . . 8 (𝑖 = 𝐼 → (((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ↔ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
8281, 26, 3rspcdva 3623 . . . . . . 7 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
83 vdwlem1.e . . . . . . . . 9 (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
8483sneqd 4643 . . . . . . . 8 (𝜑 → {(𝐹𝐴)} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8584imaeq2d 6080 . . . . . . 7 (𝜑 → (𝐹 “ {(𝐹𝐴)}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8682, 85sseqtrrd 4037 . . . . . 6 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
8774, 86unssd 4202 . . . . 5 (𝜑 → ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))) ⊆ (𝐹 “ {(𝐹𝐴)}))
888, 87eqsstrd 4034 . . . 4 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
89 oveq1 7438 . . . . . 6 (𝑎 = 𝐴 → (𝑎(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))𝑑))
9089sseq1d 4027 . . . . 5 (𝑎 = 𝐴 → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
91 oveq2 7439 . . . . . 6 (𝑑 = (𝐷𝐼) → (𝐴(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)))
9291sseq1d 4027 . . . . 5 (𝑑 = (𝐷𝐼) → ((𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})))
9390, 92rspc2ev 3635 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ ∧ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
941, 4, 88, 93syl3anc 1370 . . 3 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
95 fvex 6920 . . . 4 (𝐹𝐴) ∈ V
96 sneq 4641 . . . . . . 7 (𝑐 = (𝐹𝐴) → {𝑐} = {(𝐹𝐴)})
9796imaeq2d 6080 . . . . . 6 (𝑐 = (𝐹𝐴) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝐴)}))
9897sseq2d 4028 . . . . 5 (𝑐 = (𝐹𝐴) → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
99982rexbidv 3220 . . . 4 (𝑐 = (𝐹𝐴) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
10095, 99spcev 3606 . . 3 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
10194, 100syl 17 . 2 (𝜑 → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
102 ovex 7464 . . 3 (1...𝑊) ∈ V
103 peano2nn0 12564 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1046, 103syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ ℕ0)
105102, 104, 29vdwmc 17012 . 2 (𝜑 → ((𝐾 + 1) MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐})))
106101, 105mpbird 257 1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  cun 3961  wss 3963  {csn 4631   class class class wbr 5148  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  APcvdwa 16999   MonoAP cvdwm 17000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-vdwap 17002  df-vdwmc 17003
This theorem is referenced by:  vdwlem6  17020
  Copyright terms: Public domain W3C validator