MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem7 Structured version   Visualization version   GIF version

Theorem vdwlem7 16859
Description: Lemma for vdw 16866. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
Assertion
Ref Expression
vdwlem7 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝐷,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem7
Dummy variables 𝑘 𝑎 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7390 . . 3 (1...𝑊) ∈ V
2 2nn0 12430 . . . 4 2 ∈ ℕ0
3 vdwlem7.k . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
4 eluznn0 12842 . . . 4 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
52, 3, 4sylancr 587 . . 3 (𝜑𝐾 ∈ ℕ0)
6 vdwlem7.g . . 3 (𝜑𝐺:(1...𝑊)⟶𝑅)
7 vdwlem7.m . . 3 (𝜑𝑀 ∈ ℕ)
8 eqid 2736 . . 3 (1...𝑀) = (1...𝑀)
91, 5, 6, 7, 8vdwpc 16852 . 2 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
10 vdwlem3.v . . . . . 6 (𝜑𝑉 ∈ ℕ)
1110ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑉 ∈ ℕ)
12 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑊 ∈ ℕ)
14 vdwlem4.r . . . . . 6 (𝜑𝑅 ∈ Fin)
1514ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑅 ∈ Fin)
16 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
1716ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
18 vdwlem4.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
197ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑀 ∈ ℕ)
206ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐺:(1...𝑊)⟶𝑅)
213ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐾 ∈ (ℤ‘2))
22 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
2322ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐴 ∈ ℕ)
24 vdwlem7.d . . . . . 6 (𝜑𝐷 ∈ ℕ)
2524ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐷 ∈ ℕ)
26 vdwlem7.s . . . . . 6 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
2726ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
28 simplrl 775 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑎 ∈ ℕ)
29 simplrr 776 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑 ∈ (ℕ ↑m (1...𝑀)))
30 nnex 12159 . . . . . . 7 ℕ ∈ V
31 ovex 7390 . . . . . . 7 (1...𝑀) ∈ V
3230, 31elmap 8809 . . . . . 6 (𝑑 ∈ (ℕ ↑m (1...𝑀)) ↔ 𝑑:(1...𝑀)⟶ℕ)
3329, 32sylib 217 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑:(1...𝑀)⟶ℕ)
34 simprl 769 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}))
35 fveq2 6842 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
3635oveq2d 7373 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑎 + (𝑑𝑖)) = (𝑎 + (𝑑𝑘)))
3736, 35oveq12d 7375 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)))
3836fveq2d 6846 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝐺‘(𝑎 + (𝑑𝑖))) = (𝐺‘(𝑎 + (𝑑𝑘))))
3938sneqd 4598 . . . . . . . . 9 (𝑖 = 𝑘 → {(𝐺‘(𝑎 + (𝑑𝑖)))} = {(𝐺‘(𝑎 + (𝑑𝑘)))})
4039imaeq2d 6013 . . . . . . . 8 (𝑖 = 𝑘 → (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) = (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4137, 40sseq12d 3977 . . . . . . 7 (𝑖 = 𝑘 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))})))
4241cbvralvw 3225 . . . . . 6 (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4334, 42sylib 217 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4438cbvmptv 5218 . . . . 5 (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖)))) = (𝑘 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑘))))
45 simprr 771 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)
46 eqid 2736 . . . . 5 (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) = (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
47 eqid 2736 . . . . 5 (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷))) = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷)))
4811, 13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 33, 43, 44, 45, 46, 47vdwlem6 16858 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
4948ex 413 . . 3 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) → ((∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
5049rexlimdvva 3205 . 2 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
519, 50sylbid 239 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  ifcif 4486  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188  ccnv 5632  ran crn 5634  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cuz 12763  ...cfz 13424  chash 14230  APcvdwa 16837   MonoAP cvdwm 16838   PolyAP cvdwp 16839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-hash 14231  df-vdwap 16840  df-vdwmc 16841  df-vdwpc 16842
This theorem is referenced by:  vdwlem9  16861
  Copyright terms: Public domain W3C validator