Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem7 Structured version   Visualization version   GIF version

Theorem vdwlem7 16315
 Description: Lemma for vdw 16322. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
Assertion
Ref Expression
vdwlem7 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝐷,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem7
Dummy variables 𝑘 𝑎 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7168 . . 3 (1...𝑊) ∈ V
2 2nn0 11904 . . . 4 2 ∈ ℕ0
3 vdwlem7.k . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
4 eluznn0 12307 . . . 4 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
52, 3, 4sylancr 590 . . 3 (𝜑𝐾 ∈ ℕ0)
6 vdwlem7.g . . 3 (𝜑𝐺:(1...𝑊)⟶𝑅)
7 vdwlem7.m . . 3 (𝜑𝑀 ∈ ℕ)
8 eqid 2798 . . 3 (1...𝑀) = (1...𝑀)
91, 5, 6, 7, 8vdwpc 16308 . 2 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
10 vdwlem3.v . . . . . 6 (𝜑𝑉 ∈ ℕ)
1110ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑉 ∈ ℕ)
12 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
1312ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑊 ∈ ℕ)
14 vdwlem4.r . . . . . 6 (𝜑𝑅 ∈ Fin)
1514ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑅 ∈ Fin)
16 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
1716ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
18 vdwlem4.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
197ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑀 ∈ ℕ)
206ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐺:(1...𝑊)⟶𝑅)
213ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐾 ∈ (ℤ‘2))
22 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
2322ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐴 ∈ ℕ)
24 vdwlem7.d . . . . . 6 (𝜑𝐷 ∈ ℕ)
2524ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐷 ∈ ℕ)
26 vdwlem7.s . . . . . 6 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
2726ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
28 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑎 ∈ ℕ)
29 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑 ∈ (ℕ ↑m (1...𝑀)))
30 nnex 11633 . . . . . . 7 ℕ ∈ V
31 ovex 7168 . . . . . . 7 (1...𝑀) ∈ V
3230, 31elmap 8420 . . . . . 6 (𝑑 ∈ (ℕ ↑m (1...𝑀)) ↔ 𝑑:(1...𝑀)⟶ℕ)
3329, 32sylib 221 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑:(1...𝑀)⟶ℕ)
34 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}))
35 fveq2 6645 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
3635oveq2d 7151 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑎 + (𝑑𝑖)) = (𝑎 + (𝑑𝑘)))
3736, 35oveq12d 7153 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)))
3836fveq2d 6649 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝐺‘(𝑎 + (𝑑𝑖))) = (𝐺‘(𝑎 + (𝑑𝑘))))
3938sneqd 4537 . . . . . . . . 9 (𝑖 = 𝑘 → {(𝐺‘(𝑎 + (𝑑𝑖)))} = {(𝐺‘(𝑎 + (𝑑𝑘)))})
4039imaeq2d 5896 . . . . . . . 8 (𝑖 = 𝑘 → (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) = (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4137, 40sseq12d 3948 . . . . . . 7 (𝑖 = 𝑘 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))})))
4241cbvralvw 3396 . . . . . 6 (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4334, 42sylib 221 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4438cbvmptv 5133 . . . . 5 (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖)))) = (𝑘 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑘))))
45 simprr 772 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)
46 eqid 2798 . . . . 5 (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) = (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
47 eqid 2798 . . . . 5 (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷))) = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷)))
4811, 13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 33, 43, 44, 45, 46, 47vdwlem6 16314 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
4948ex 416 . . 3 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) → ((∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
5049rexlimdvva 3253 . 2 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
519, 50sylbid 243 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ifcif 4425  {csn 4525  ⟨cop 4531   class class class wbr 5030   ↦ cmpt 5110  ◡ccnv 5518  ran crn 5520   “ cima 5522  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8391  Fincfn 8494  0cc0 10528  1c1 10529   + caddc 10531   · cmul 10533   − cmin 10861  ℕcn 11627  2c2 11682  ℕ0cn0 11887  ℤ≥cuz 12233  ...cfz 12887  ♯chash 13688  APcvdwa 16293   MonoAP cvdwm 16294   PolyAP cvdwp 16295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-fz 12888  df-hash 13689  df-vdwap 16296  df-vdwmc 16297  df-vdwpc 16298 This theorem is referenced by:  vdwlem9  16317
 Copyright terms: Public domain W3C validator