MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem7 Structured version   Visualization version   GIF version

Theorem vdwlem7 16958
Description: Lemma for vdw 16965. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
Assertion
Ref Expression
vdwlem7 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝐷,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem7
Dummy variables 𝑘 𝑎 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . 3 (1...𝑊) ∈ V
2 2nn0 12459 . . . 4 2 ∈ ℕ0
3 vdwlem7.k . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
4 eluznn0 12876 . . . 4 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
52, 3, 4sylancr 587 . . 3 (𝜑𝐾 ∈ ℕ0)
6 vdwlem7.g . . 3 (𝜑𝐺:(1...𝑊)⟶𝑅)
7 vdwlem7.m . . 3 (𝜑𝑀 ∈ ℕ)
8 eqid 2729 . . 3 (1...𝑀) = (1...𝑀)
91, 5, 6, 7, 8vdwpc 16951 . 2 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
10 vdwlem3.v . . . . . 6 (𝜑𝑉 ∈ ℕ)
1110ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑉 ∈ ℕ)
12 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑊 ∈ ℕ)
14 vdwlem4.r . . . . . 6 (𝜑𝑅 ∈ Fin)
1514ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑅 ∈ Fin)
16 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
1716ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
18 vdwlem4.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
197ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑀 ∈ ℕ)
206ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐺:(1...𝑊)⟶𝑅)
213ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐾 ∈ (ℤ‘2))
22 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
2322ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐴 ∈ ℕ)
24 vdwlem7.d . . . . . 6 (𝜑𝐷 ∈ ℕ)
2524ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐷 ∈ ℕ)
26 vdwlem7.s . . . . . 6 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
2726ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
28 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑎 ∈ ℕ)
29 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑 ∈ (ℕ ↑m (1...𝑀)))
30 nnex 12192 . . . . . . 7 ℕ ∈ V
31 ovex 7420 . . . . . . 7 (1...𝑀) ∈ V
3230, 31elmap 8844 . . . . . 6 (𝑑 ∈ (ℕ ↑m (1...𝑀)) ↔ 𝑑:(1...𝑀)⟶ℕ)
3329, 32sylib 218 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑:(1...𝑀)⟶ℕ)
34 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}))
35 fveq2 6858 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
3635oveq2d 7403 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑎 + (𝑑𝑖)) = (𝑎 + (𝑑𝑘)))
3736, 35oveq12d 7405 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)))
3836fveq2d 6862 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝐺‘(𝑎 + (𝑑𝑖))) = (𝐺‘(𝑎 + (𝑑𝑘))))
3938sneqd 4601 . . . . . . . . 9 (𝑖 = 𝑘 → {(𝐺‘(𝑎 + (𝑑𝑖)))} = {(𝐺‘(𝑎 + (𝑑𝑘)))})
4039imaeq2d 6031 . . . . . . . 8 (𝑖 = 𝑘 → (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) = (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4137, 40sseq12d 3980 . . . . . . 7 (𝑖 = 𝑘 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))})))
4241cbvralvw 3215 . . . . . 6 (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4334, 42sylib 218 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4438cbvmptv 5211 . . . . 5 (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖)))) = (𝑘 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑘))))
45 simprr 772 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)
46 eqid 2729 . . . . 5 (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) = (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
47 eqid 2729 . . . . 5 (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷))) = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷)))
4811, 13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 33, 43, 44, 45, 46, 47vdwlem6 16957 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
4948ex 412 . . 3 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑m (1...𝑀)))) → ((∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
5049rexlimdvva 3194 . 2 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
519, 50sylbid 240 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cuz 12793  ...cfz 13468  chash 14295  APcvdwa 16936   MonoAP cvdwm 16937   PolyAP cvdwp 16938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-hash 14296  df-vdwap 16939  df-vdwmc 16940  df-vdwpc 16941
This theorem is referenced by:  vdwlem9  16960
  Copyright terms: Public domain W3C validator