Proof of Theorem weiunfrlem1
Step | Hyp | Ref
| Expression |
1 | | weiunfrlem1.2 |
. . . 4
⊢ 𝐶 = (℩𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
2 | | simpl 482 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴)) |
3 | | weiunfrlem1.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
4 | 3 | weiunlem1 36376 |
. . . . . . . . 9
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)))) |
5 | 4 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)))) |
6 | 5 | simp1d 1142 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
7 | 6 | fimassd 6767 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐹 “ 𝑟) ⊆ 𝐴) |
8 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
9 | 6 | fdmd 6756 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → dom 𝐹 = ∪ 𝑥 ∈ 𝐴 𝐵) |
10 | 8, 9 | sseqtrrd 4044 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑟 ⊆ dom 𝐹) |
11 | | sseqin2 4238 |
. . . . . . . . 9
⊢ (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑟) = 𝑟) |
12 | 10, 11 | sylib 218 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (dom 𝐹 ∩ 𝑟) = 𝑟) |
13 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑟 ≠ ∅) |
14 | 12, 13 | eqnetrd 3010 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (dom 𝐹 ∩ 𝑟) ≠ ∅) |
15 | 14 | imadisjlnd 6109 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐹 “ 𝑟) ≠ ∅) |
16 | | wereu2 5696 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐹 “ 𝑟) ⊆ 𝐴 ∧ (𝐹 “ 𝑟) ≠ ∅)) → ∃!𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
17 | 2, 7, 15, 16 | syl12anc 836 |
. . . . 5
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∃!𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
18 | | riotacl2 7418 |
. . . . 5
⊢
(∃!𝑠 ∈
(𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠 → (℩𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) ∈ {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠}) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (℩𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) ∈ {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠}) |
20 | 1, 19 | eqeltrid 2842 |
. . 3
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝐶 ∈ {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠}) |
21 | 6 | ffnd 6747 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝐹 Fn ∪
𝑥 ∈ 𝐴 𝐵) |
22 | | breq1 5172 |
. . . . . . 7
⊢ (𝑡 = (𝐹‘𝑤) → (𝑡𝑅𝑠 ↔ (𝐹‘𝑤)𝑅𝑠)) |
23 | 22 | notbid 318 |
. . . . . 6
⊢ (𝑡 = (𝐹‘𝑤) → (¬ 𝑡𝑅𝑠 ↔ ¬ (𝐹‘𝑤)𝑅𝑠)) |
24 | 23 | ralima 7272 |
. . . . 5
⊢ ((𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) → (∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠 ↔ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠)) |
25 | 24 | rabbidv 3446 |
. . . 4
⊢ ((𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) → {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠} = {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠}) |
26 | 21, 8, 25 | syl2anc 583 |
. . 3
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠} = {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠}) |
27 | 20, 26 | eleqtrd 2840 |
. 2
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝐶 ∈ {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠}) |
28 | | nfriota1 7408 |
. . . 4
⊢
Ⅎ𝑠(℩𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
29 | 1, 28 | nfcxfr 2902 |
. . 3
⊢
Ⅎ𝑠𝐶 |
30 | | nfcv 2904 |
. . 3
⊢
Ⅎ𝑠(𝐹 “ 𝑟) |
31 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑠𝑟 |
32 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑠(𝐹‘𝑤) |
33 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑠𝑅 |
34 | 32, 33, 29 | nfbr 5216 |
. . . . 5
⊢
Ⅎ𝑠(𝐹‘𝑤)𝑅𝐶 |
35 | 34 | nfn 1856 |
. . . 4
⊢
Ⅎ𝑠 ¬
(𝐹‘𝑤)𝑅𝐶 |
36 | 31, 35 | nfralw 3312 |
. . 3
⊢
Ⅎ𝑠∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝐶 |
37 | | breq2 5173 |
. . . . 5
⊢ (𝑠 = 𝐶 → ((𝐹‘𝑤)𝑅𝑠 ↔ (𝐹‘𝑤)𝑅𝐶)) |
38 | 37 | notbid 318 |
. . . 4
⊢ (𝑠 = 𝐶 → (¬ (𝐹‘𝑤)𝑅𝑠 ↔ ¬ (𝐹‘𝑤)𝑅𝐶)) |
39 | 38 | ralbidv 3180 |
. . 3
⊢ (𝑠 = 𝐶 → (∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠 ↔ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝐶)) |
40 | 29, 30, 36, 39 | elrabf 3699 |
. 2
⊢ (𝐶 ∈ {𝑠 ∈ (𝐹 “ 𝑟) ∣ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝑠} ↔ (𝐶 ∈ (𝐹 “ 𝑟) ∧ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝐶)) |
41 | 27, 40 | sylib 218 |
1
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐶 ∈ (𝐹 “ 𝑟) ∧ ∀𝑤 ∈ 𝑟 ¬ (𝐹‘𝑤)𝑅𝐶)) |