MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri Structured version   Visualization version   GIF version

Theorem xmettri 24178
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) +𝑒 (𝐢𝐷𝐡)))

Proof of Theorem xmettri
StepHypRef Expression
1 simpl 482 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simpr3 1195 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐢 ∈ 𝑋)
3 simpr1 1193 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
4 simpr2 1194 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
5 xmettri2 24167 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐢𝐷𝐴) +𝑒 (𝐢𝐷𝐡)))
61, 2, 3, 4, 5syl13anc 1371 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐢𝐷𝐴) +𝑒 (𝐢𝐷𝐡)))
7 xmetsym 24174 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐢𝐷𝐴) = (𝐴𝐷𝐢))
81, 2, 3, 7syl3anc 1370 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐢𝐷𝐴) = (𝐴𝐷𝐢))
98oveq1d 7427 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐢𝐷𝐴) +𝑒 (𝐢𝐷𝐡)) = ((𝐴𝐷𝐢) +𝑒 (𝐢𝐷𝐡)))
106, 9breqtrd 5174 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ≀ ((𝐴𝐷𝐢) +𝑒 (𝐢𝐷𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412   ≀ cle 11256   +𝑒 cxad 13097  βˆžMetcxmet 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-xadd 13100  df-xmet 21227
This theorem is referenced by:  xmettri3  24180  xmetrtri  24182  imasdsf1olem  24200  xmeter  24260  xmstri  24295  metdcnlem  24673  iscau3  25127  heicant  36990
  Copyright terms: Public domain W3C validator