MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulge0 Structured version   Visualization version   GIF version

Theorem xmulge0 12665
Description: Extended real version of mulge0 11147. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulge0 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))

Proof of Theorem xmulge0
StepHypRef Expression
1 xmulgt0 12664 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
21an4s 659 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
3 0xr 10677 . . . . . . . 8 0 ∈ ℝ*
4 xmulcl 12654 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
54adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 ·e 𝐵) ∈ ℝ*)
6 xrltle 12530 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐴 ·e 𝐵) ∈ ℝ*) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
73, 5, 6sylancr 590 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
82, 7mpd 15 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
98ex 416 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
109ad2ant2r 746 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
1110impl 459 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
12 0le0 11726 . . . . 5 0 ≤ 0
13 oveq2 7143 . . . . . . 7 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
1413eqcomd 2804 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
15 xmul01 12648 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
1615ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (𝐴 ·e 0) = 0)
1714, 16sylan9eqr 2855 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
1812, 17breqtrrid 5068 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
1918adantlr 714 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
20 xrleloe 12525 . . . . . 6 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
213, 20mpan 689 . . . . 5 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
2221biimpa 480 . . . 4 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
2322ad2antlr 726 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
2411, 19, 23mpjaodan 956 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
25 oveq1 7142 . . . . 5 (0 = 𝐴 → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
2625eqcomd 2804 . . . 4 (0 = 𝐴 → (𝐴 ·e 𝐵) = (0 ·e 𝐵))
27 xmul02 12649 . . . . 5 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2827ad2antrl 727 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 ·e 𝐵) = 0)
2926, 28sylan9eqr 2855 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → (𝐴 ·e 𝐵) = 0)
3012, 29breqtrrid 5068 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
31 xrleloe 12525 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
323, 31mpan 689 . . . 4 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3332biimpa 480 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
3433adantr 484 . 2 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 < 𝐴 ∨ 0 = 𝐴))
3524, 30, 34mpjaodan 956 1 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  0cc0 10526  *cxr 10663   < clt 10664  cle 10665   ·e cxmu 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-xmul 12497
This theorem is referenced by:  xadddi2  12678  ge0xmulcl  12841
  Copyright terms: Public domain W3C validator