MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulge0 Structured version   Visualization version   GIF version

Theorem xmulge0 13326
Description: Extended real version of mulge0 11781. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulge0 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))

Proof of Theorem xmulge0
StepHypRef Expression
1 xmulgt0 13325 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
21an4s 660 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
3 0xr 11308 . . . . . . . 8 0 ∈ ℝ*
4 xmulcl 13315 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
54adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 ·e 𝐵) ∈ ℝ*)
6 xrltle 13191 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐴 ·e 𝐵) ∈ ℝ*) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
73, 5, 6sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
82, 7mpd 15 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
98ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
109ad2ant2r 747 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
1110impl 455 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
12 0le0 12367 . . . . 5 0 ≤ 0
13 oveq2 7439 . . . . . . 7 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
1413eqcomd 2743 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
15 xmul01 13309 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
1615ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (𝐴 ·e 0) = 0)
1714, 16sylan9eqr 2799 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
1812, 17breqtrrid 5181 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
1918adantlr 715 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
20 xrleloe 13186 . . . . . 6 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
213, 20mpan 690 . . . . 5 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
2221biimpa 476 . . . 4 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
2322ad2antlr 727 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
2411, 19, 23mpjaodan 961 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
25 oveq1 7438 . . . . 5 (0 = 𝐴 → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
2625eqcomd 2743 . . . 4 (0 = 𝐴 → (𝐴 ·e 𝐵) = (0 ·e 𝐵))
27 xmul02 13310 . . . . 5 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2827ad2antrl 728 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 ·e 𝐵) = 0)
2926, 28sylan9eqr 2799 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → (𝐴 ·e 𝐵) = 0)
3012, 29breqtrrid 5181 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
31 xrleloe 13186 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
323, 31mpan 690 . . . 4 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3332biimpa 476 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
3433adantr 480 . 2 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 < 𝐴 ∨ 0 = 𝐴))
3524, 30, 34mpjaodan 961 1 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  0cc0 11155  *cxr 11294   < clt 11295  cle 11296   ·e cxmu 13153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-xmul 13156
This theorem is referenced by:  xadddi2  13339  ge0xmulcl  13503
  Copyright terms: Public domain W3C validator