MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulge0 Structured version   Visualization version   GIF version

Theorem xmulge0 13244
Description: Extended real version of mulge0 11696. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulge0 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))

Proof of Theorem xmulge0
StepHypRef Expression
1 xmulgt0 13243 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
21an4s 660 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
3 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
4 xmulcl 13233 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
54adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (𝐴 ·e 𝐵) ∈ ℝ*)
6 xrltle 13109 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐴 ·e 𝐵) ∈ ℝ*) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
73, 5, 6sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → (0 < (𝐴 ·e 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
82, 7mpd 15 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
98ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
109ad2ant2r 747 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵)))
1110impl 455 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
12 0le0 12287 . . . . 5 0 ≤ 0
13 oveq2 7395 . . . . . . 7 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
1413eqcomd 2735 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
15 xmul01 13227 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
1615ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (𝐴 ·e 0) = 0)
1714, 16sylan9eqr 2786 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
1812, 17breqtrrid 5145 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
1918adantlr 715 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 ≤ (𝐴 ·e 𝐵))
20 xrleloe 13104 . . . . . 6 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
213, 20mpan 690 . . . . 5 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
2221biimpa 476 . . . 4 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
2322ad2antlr 727 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
2411, 19, 23mpjaodan 960 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 < 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
25 oveq1 7394 . . . . 5 (0 = 𝐴 → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
2625eqcomd 2735 . . . 4 (0 = 𝐴 → (𝐴 ·e 𝐵) = (0 ·e 𝐵))
27 xmul02 13228 . . . . 5 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2827ad2antrl 728 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 ·e 𝐵) = 0)
2926, 28sylan9eqr 2786 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → (𝐴 ·e 𝐵) = 0)
3012, 29breqtrrid 5145 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ 0 = 𝐴) → 0 ≤ (𝐴 ·e 𝐵))
31 xrleloe 13104 . . . . 5 ((0 ∈ ℝ*𝐴 ∈ ℝ*) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
323, 31mpan 690 . . . 4 (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3332biimpa 476 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (0 < 𝐴 ∨ 0 = 𝐴))
3433adantr 480 . 2 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → (0 < 𝐴 ∨ 0 = 𝐴))
3524, 30, 34mpjaodan 960 1 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  0cc0 11068  *cxr 11207   < clt 11208  cle 11209   ·e cxmu 13071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-xmul 13074
This theorem is referenced by:  xadddi2  13257  ge0xmulcl  13424
  Copyright terms: Public domain W3C validator