MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul01 Structured version   Visualization version   GIF version

Theorem mul01 10813
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul01 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)

Proof of Theorem mul01
StepHypRef Expression
1 0cn 10627 . . 3 0 ∈ ℂ
2 mulcom 10617 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 · 0) = (0 · 𝐴))
31, 2mpan2 687 . 2 (𝐴 ∈ ℂ → (𝐴 · 0) = (0 · 𝐴))
4 mul02 10812 . 2 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
53, 4eqtrd 2861 1 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  (class class class)co 7150  cc 10529  0cc0 10531   · cmul 10536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674
This theorem is referenced by:  addid1  10814  cnegex  10815  mul01i  10824  mul01d  10833  bernneq  13585  bcval5  13673  geo2lim  15226  efexp  15449  gcdmultiplezOLD  15896  plymul0or  24804  fta1lem  24830  1cxp  25187  cxpmul2  25204  efrlim  25480  lgsne0  25844  vcz  28285  blocnilem  28514  hvmul0  28734  ocsh  28993  0lnfn  29695  nlelshi  29770  0even  44104  2zrngamgm  44112
  Copyright terms: Public domain W3C validator