![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul01 | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul01 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10320 | . . 3 ⊢ 0 ∈ ℂ | |
2 | mulcom 10310 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 · 0) = (0 · 𝐴)) | |
3 | 1, 2 | mpan2 683 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = (0 · 𝐴)) |
4 | mul02 10504 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
5 | 3, 4 | eqtrd 2833 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 (class class class)co 6878 ℂcc 10222 0cc0 10224 · cmul 10229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-ltxr 10368 |
This theorem is referenced by: addid1 10506 cnegex 10507 mul01i 10516 mul01d 10525 bernneq 13244 bcval5 13358 geo2lim 14944 efexp 15167 gcdmultiplez 15605 plymul0or 24377 fta1lem 24403 1cxp 24759 cxpmul2 24776 efrlim 25048 lgsne0 25412 vcz 27955 blocnilem 28184 hvmul0 28406 ocsh 28667 0lnfn 29369 nlelshi 29444 0even 42730 2zrngamgm 42738 |
Copyright terms: Public domain | W3C validator |