MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre3 Structured version   Visualization version   GIF version

Theorem xrre3 13151
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 13104 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
21adantl 481 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ < 𝐵)
3 mnfxr 11270 . . . . . 6 -∞ ∈ ℝ*
4 rexr 11259 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
54adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
7 xrltletr 13137 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
83, 5, 6, 7mp3an2i 1462 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
92, 8mpand 692 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 → -∞ < 𝐴))
109imp 406 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐵𝐴) → -∞ < 𝐴)
1110adantrr 714 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → -∞ < 𝐴)
12 simprr 770 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 < +∞)
13 xrrebnd 13148 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1413ad2antrr 723 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1511, 12, 14mpbir2and 710 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098   class class class wbr 5139  cr 11106  +∞cpnf 11244  -∞cmnf 11245  *cxr 11246   < clt 11247  cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253
This theorem is referenced by:  elicore  13377  sibfinima  33857  orvcgteel  33985  ismblfin  37032
  Copyright terms: Public domain W3C validator