MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre3 Structured version   Visualization version   GIF version

Theorem xrre3 12567
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
xrre3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre3
StepHypRef Expression
1 mnflt 12521 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
21adantl 484 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -∞ < 𝐵)
3 mnfxr 10701 . . . . . 6 -∞ ∈ ℝ*
4 rexr 10690 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
54adantl 484 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6 simpl 485 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
7 xrltletr 12553 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
83, 5, 6, 7mp3an2i 1462 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((-∞ < 𝐵𝐵𝐴) → -∞ < 𝐴))
92, 8mpand 693 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 → -∞ < 𝐴))
109imp 409 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐵𝐴) → -∞ < 𝐴)
1110adantrr 715 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → -∞ < 𝐴)
12 simprr 771 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 < +∞)
13 xrrebnd 12564 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1413ad2antrr 724 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1511, 12, 14mpbir2and 711 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2113   class class class wbr 5069  cr 10539  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684
This theorem is referenced by:  elicore  12792  sibfinima  31601  orvcgteel  31729  ismblfin  34937
  Copyright terms: Public domain W3C validator