Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrre2 | Structured version Visualization version GIF version |
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrre2 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfle 12570 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
2 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -∞ ≤ 𝐴) |
3 | mnfxr 10736 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
4 | xrlelttr 12590 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) | |
5 | 3, 4 | mp3an1 1445 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) |
6 | 2, 5 | mpand 694 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
7 | 6 | 3adant3 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
8 | pnfge 12566 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → 𝐶 ≤ +∞) | |
9 | 8 | adantl 485 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ≤ +∞) |
10 | pnfxr 10733 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
11 | xrltletr 12591 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) | |
12 | 10, 11 | mp3an3 1447 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) |
13 | 9, 12 | mpan2d 693 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
14 | 13 | 3adant1 1127 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
15 | 7, 14 | anim12d 611 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
16 | xrrebnd 12602 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) | |
17 | 16 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
18 | 15, 17 | sylibrd 262 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)) |
19 | 18 | imp 410 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5032 ℝcr 10574 +∞cpnf 10710 -∞cmnf 10711 ℝ*cxr 10712 < clt 10713 ≤ cle 10714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 |
This theorem is referenced by: elioore 12809 xrsdsreclblem 20212 pnfnei 21920 mnfnei 21921 tgioo 23497 ovolunnul 24200 icombl 24264 ioombl 24265 ioorcl2 24272 volivth 24307 dvferm2lem 24685 itg2gt0cn 35392 iccpartipre 44306 |
Copyright terms: Public domain | W3C validator |