MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre2 Structured version   Visualization version   GIF version

Theorem xrre2 12551
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
xrre2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)

Proof of Theorem xrre2
StepHypRef Expression
1 mnfle 12517 . . . . . . 7 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
21adantr 484 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -∞ ≤ 𝐴)
3 mnfxr 10687 . . . . . . 7 -∞ ∈ ℝ*
4 xrlelttr 12537 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
53, 4mp3an1 1445 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
62, 5mpand 694 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
763adant3 1129 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
8 pnfge 12513 . . . . . . 7 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
98adantl 485 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ +∞)
10 pnfxr 10684 . . . . . . 7 +∞ ∈ ℝ*
11 xrltletr 12538 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
1210, 11mp3an3 1447 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
139, 12mpan2d 693 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
14133adant1 1127 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
157, 14anim12d 611 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → (-∞ < 𝐵𝐵 < +∞)))
16 xrrebnd 12549 . . . 4 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
17163ad2ant2 1131 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
1815, 17sylibrd 262 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐵 ∈ ℝ))
1918imp 410 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111   class class class wbr 5030  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  elioore  12756  xrsdsreclblem  20137  pnfnei  21825  mnfnei  21826  tgioo  23401  ovolunnul  24104  icombl  24168  ioombl  24169  ioorcl2  24176  volivth  24211  dvferm2lem  24589  itg2gt0cn  35112  iccpartipre  43938
  Copyright terms: Public domain W3C validator