| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrre2 | Structured version Visualization version GIF version | ||
| Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrre2 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfle 13055 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -∞ ≤ 𝐴) |
| 3 | mnfxr 11191 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 4 | xrlelttr 13076 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) | |
| 5 | 3, 4 | mp3an1 1450 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) |
| 6 | 2, 5 | mpand 695 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 7 | 6 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 8 | pnfge 13050 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → 𝐶 ≤ +∞) | |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ≤ +∞) |
| 10 | pnfxr 11188 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 11 | xrltletr 13077 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) | |
| 12 | 10, 11 | mp3an3 1452 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) |
| 13 | 9, 12 | mpan2d 694 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 14 | 13 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 15 | 7, 14 | anim12d 609 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 16 | xrrebnd 13088 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) | |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 18 | 15, 17 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)) |
| 19 | 18 | imp 406 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: elioore 13296 xrsdsreclblem 21337 pnfnei 23123 mnfnei 23124 tgioo 24700 ovolunnul 25417 icombl 25481 ioombl 25482 ioorcl2 25489 volivth 25524 dvferm2lem 25906 itg2gt0cn 37657 iccpartipre 47409 |
| Copyright terms: Public domain | W3C validator |