MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre2 Structured version   Visualization version   GIF version

Theorem xrre2 13090
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
xrre2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)

Proof of Theorem xrre2
StepHypRef Expression
1 mnfle 13055 . . . . . . 7 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
21adantr 480 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -∞ ≤ 𝐴)
3 mnfxr 11191 . . . . . . 7 -∞ ∈ ℝ*
4 xrlelttr 13076 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
53, 4mp3an1 1450 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
62, 5mpand 695 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
763adant3 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
8 pnfge 13050 . . . . . . 7 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
98adantl 481 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ +∞)
10 pnfxr 11188 . . . . . . 7 +∞ ∈ ℝ*
11 xrltletr 13077 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
1210, 11mp3an3 1452 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
139, 12mpan2d 694 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
14133adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
157, 14anim12d 609 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → (-∞ < 𝐵𝐵 < +∞)))
16 xrrebnd 13088 . . . 4 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
17163ad2ant2 1134 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
1815, 17sylibrd 259 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐵 ∈ ℝ))
1918imp 406 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5095  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  elioore  13296  xrsdsreclblem  21337  pnfnei  23123  mnfnei  23124  tgioo  24700  ovolunnul  25417  icombl  25481  ioombl  25482  ioorcl2  25489  volivth  25524  dvferm2lem  25906  itg2gt0cn  37657  iccpartipre  47409
  Copyright terms: Public domain W3C validator