| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrre2 | Structured version Visualization version GIF version | ||
| Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrre2 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfle 13038 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -∞ ≤ 𝐴) |
| 3 | mnfxr 11178 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 4 | xrlelttr 13059 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) | |
| 5 | 3, 4 | mp3an1 1450 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) |
| 6 | 2, 5 | mpand 695 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 7 | 6 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 8 | pnfge 13033 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → 𝐶 ≤ +∞) | |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ≤ +∞) |
| 10 | pnfxr 11175 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 11 | xrltletr 13060 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) | |
| 12 | 10, 11 | mp3an3 1452 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) |
| 13 | 9, 12 | mpan2d 694 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 14 | 13 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 15 | 7, 14 | anim12d 609 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 16 | xrrebnd 13071 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) | |
| 17 | 16 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 18 | 15, 17 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)) |
| 19 | 18 | imp 406 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: elioore 13279 xrsdsreclblem 21353 pnfnei 23138 mnfnei 23139 tgioo 24714 ovolunnul 25431 icombl 25495 ioombl 25496 ioorcl2 25503 volivth 25538 dvferm2lem 25920 itg2gt0cn 37738 iccpartipre 47548 |
| Copyright terms: Public domain | W3C validator |