ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2sub GIF version

Theorem binom2sub 10564
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
binom2sub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Proof of Theorem binom2sub
StepHypRef Expression
1 negcl 8094 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 binom2 10562 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
31, 2sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
4 negsub 8142 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54oveq1d 5856 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = ((𝐴𝐵)↑2))
63, 5eqtr3d 2200 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = ((𝐴𝐵)↑2))
7 mulneg2 8290 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
87oveq2d 5857 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · -𝐵)) = (2 · -(𝐴 · 𝐵)))
9 2cn 8924 . . . . . . 7 2 ∈ ℂ
10 mulcl 7876 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
11 mulneg2 8290 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
129, 10, 11sylancr 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
138, 12eqtr2d 2199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(2 · (𝐴 · 𝐵)) = (2 · (𝐴 · -𝐵)))
1413oveq2d 5857 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) + (2 · (𝐴 · -𝐵))))
15 sqcl 10512 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1615adantr 274 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 mulcl 7876 . . . . . 6 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
189, 10, 17sylancr 411 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
1916, 18negsubd 8211 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
2014, 19eqtr3d 2200 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · -𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
21 sqneg 10510 . . . 4 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
2221adantl 275 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵↑2) = (𝐵↑2))
2320, 22oveq12d 5859 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
246, 23eqtr3d 2200 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5841  cc 7747   + caddc 7752   · cmul 7754  cmin 8065  -cneg 8066  2c2 8904  cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  binom2sub1  10565  binom2subi  10566  resqrexlemover  10948  resqrexlemcalc1  10952  amgm2  11056  bdtrilem  11176  pythagtriplem1  12193  pythagtriplem14  12205  tangtx  13359
  Copyright terms: Public domain W3C validator