![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > binom2sub | GIF version |
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
binom2sub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8155 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | binom2 10628 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2))) | |
3 | 1, 2 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2))) |
4 | negsub 8203 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
5 | 4 | oveq1d 5889 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = ((𝐴 − 𝐵)↑2)) |
6 | 3, 5 | eqtr3d 2212 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = ((𝐴 − 𝐵)↑2)) |
7 | mulneg2 8351 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | |
8 | 7 | oveq2d 5890 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · -𝐵)) = (2 · -(𝐴 · 𝐵))) |
9 | 2cn 8988 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
10 | mulcl 7937 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
11 | mulneg2 8351 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵))) | |
12 | 9, 10, 11 | sylancr 414 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵))) |
13 | 8, 12 | eqtr2d 2211 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(2 · (𝐴 · 𝐵)) = (2 · (𝐴 · -𝐵))) |
14 | 13 | oveq2d 5890 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) + (2 · (𝐴 · -𝐵)))) |
15 | sqcl 10578 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
16 | 15 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ) |
17 | mulcl 7937 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ) | |
18 | 9, 10, 17 | sylancr 414 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ) |
19 | 16, 18 | negsubd 8272 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) |
20 | 14, 19 | eqtr3d 2212 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · -𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) |
21 | sqneg 10576 | . . . 4 ⊢ (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2)) | |
22 | 21 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵↑2) = (𝐵↑2)) |
23 | 20, 22 | oveq12d 5892 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
24 | 6, 23 | eqtr3d 2212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5874 ℂcc 7808 + caddc 7813 · cmul 7815 − cmin 8126 -cneg 8127 2c2 8968 ↑cexp 10516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 df-inn 8918 df-2 8976 df-n0 9175 df-z 9252 df-uz 9527 df-seqfrec 10443 df-exp 10517 |
This theorem is referenced by: binom2sub1 10631 binom2subi 10632 resqrexlemover 11014 resqrexlemcalc1 11018 amgm2 11122 bdtrilem 11242 pythagtriplem1 12259 pythagtriplem14 12271 tangtx 14152 |
Copyright terms: Public domain | W3C validator |