ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2sub GIF version

Theorem binom2sub 10820
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
binom2sub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Proof of Theorem binom2sub
StepHypRef Expression
1 negcl 8292 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 binom2 10818 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
31, 2sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
4 negsub 8340 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54oveq1d 5972 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = ((𝐴𝐵)↑2))
63, 5eqtr3d 2241 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = ((𝐴𝐵)↑2))
7 mulneg2 8488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
87oveq2d 5973 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · -𝐵)) = (2 · -(𝐴 · 𝐵)))
9 2cn 9127 . . . . . . 7 2 ∈ ℂ
10 mulcl 8072 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
11 mulneg2 8488 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
129, 10, 11sylancr 414 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
138, 12eqtr2d 2240 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(2 · (𝐴 · 𝐵)) = (2 · (𝐴 · -𝐵)))
1413oveq2d 5973 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) + (2 · (𝐴 · -𝐵))))
15 sqcl 10767 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1615adantr 276 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 mulcl 8072 . . . . . 6 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
189, 10, 17sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
1916, 18negsubd 8409 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
2014, 19eqtr3d 2241 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · -𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
21 sqneg 10765 . . . 4 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
2221adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵↑2) = (𝐵↑2))
2320, 22oveq12d 5975 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
246, 23eqtr3d 2241 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  (class class class)co 5957  cc 7943   + caddc 7948   · cmul 7950  cmin 8263  -cneg 8264  2c2 9107  cexp 10705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-exp 10706
This theorem is referenced by:  binom2sub1  10821  binom2subi  10822  resqrexlemover  11396  resqrexlemcalc1  11400  amgm2  11504  bdtrilem  11625  pythagtriplem1  12663  pythagtriplem14  12675  tangtx  15385
  Copyright terms: Public domain W3C validator