ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsp1 Unicode version

Theorem bitsp1 12470
Description: The  M  +  1-th bit of  N is the  M-th bit of  |_ ( N  /  2 ). (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  N )  <->  M  e.  (bits `  ( |_ `  ( N  /  2
) ) ) ) )

Proof of Theorem bitsp1
StepHypRef Expression
1 2nn 9280 . . . . . . . . . . . 12  |-  2  e.  NN
21a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
2  e.  NN )
32nncnd 9132 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
2  e.  CC )
4 simpr 110 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  M  e.  NN0 )
53, 4expp1d 10904 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ ( M  +  1 ) )  =  ( ( 2 ^ M )  x.  2 ) )
62, 4nnexpcld 10925 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ M
)  e.  NN )
76nncnd 9132 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ M
)  e.  CC )
87, 3mulcomd 8176 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( 2 ^ M )  x.  2 )  =  ( 2  x.  ( 2 ^ M ) ) )
95, 8eqtrd 2262 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ ( M  +  1 ) )  =  ( 2  x.  ( 2 ^ M ) ) )
109oveq2d 6023 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  /  (
2 ^ ( M  +  1 ) ) )  =  ( N  /  ( 2  x.  ( 2 ^ M
) ) ) )
11 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  N  e.  ZZ )
1211zcnd 9578 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  N  e.  CC )
132nnap0d 9164 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
2 #  0 )
146nnap0d 9164 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2 ^ M
) #  0 )
1512, 3, 7, 13, 14divdivap1d 8977 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( N  / 
2 )  /  (
2 ^ M ) )  =  ( N  /  ( 2  x.  ( 2 ^ M
) ) ) )
1610, 15eqtr4d 2265 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  /  (
2 ^ ( M  +  1 ) ) )  =  ( ( N  /  2 )  /  ( 2 ^ M ) ) )
1716fveq2d 5633 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ ( M  +  1 ) ) ) )  =  ( |_ `  ( ( N  / 
2 )  /  (
2 ^ M ) ) ) )
18 znq 9827 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  2  e.  NN )  ->  ( N  /  2
)  e.  QQ )
192, 18syldan 282 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( N  /  2
)  e.  QQ )
20 flqdiv 10551 . . . . . 6  |-  ( ( ( N  /  2
)  e.  QQ  /\  ( 2 ^ M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  /  2
) )  /  (
2 ^ M ) ) )  =  ( |_ `  ( ( N  /  2 )  /  ( 2 ^ M ) ) ) )
2119, 6, 20syl2anc 411 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  (
( |_ `  ( N  /  2 ) )  /  ( 2 ^ M ) ) )  =  ( |_ `  ( ( N  / 
2 )  /  (
2 ^ M ) ) ) )
2217, 21eqtr4d 2265 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  ( N  /  ( 2 ^ ( M  +  1 ) ) ) )  =  ( |_ `  ( ( |_ `  ( N  /  2
) )  /  (
2 ^ M ) ) ) )
2322breq2d 4095 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( 2  ||  ( |_ `  ( N  / 
( 2 ^ ( M  +  1 ) ) ) )  <->  2  ||  ( |_ `  ( ( |_ `  ( N  /  2 ) )  /  ( 2 ^ M ) ) ) ) )
2423notbid 671 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( M  +  1 ) ) ) )  <->  -.  2  ||  ( |_
`  ( ( |_
`  ( N  / 
2 ) )  / 
( 2 ^ M
) ) ) ) )
25 peano2nn0 9417 . . 3  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
26 bitsval2 12463 . . 3  |-  ( ( N  e.  ZZ  /\  ( M  +  1
)  e.  NN0 )  ->  ( ( M  + 
1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( M  +  1 ) ) ) ) ) )
2725, 26sylan2 286 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( M  +  1 ) ) ) ) ) )
2819flqcld 10505 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  ( N  /  2 ) )  e.  ZZ )
29 bitsval2 12463 . . 3  |-  ( ( ( |_ `  ( N  /  2 ) )  e.  ZZ  /\  M  e.  NN0 )  ->  ( M  e.  (bits `  ( |_ `  ( N  / 
2 ) ) )  <->  -.  2  ||  ( |_
`  ( ( |_
`  ( N  / 
2 ) )  / 
( 2 ^ M
) ) ) ) )
3028, 29sylancom 420 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( M  e.  (bits `  ( |_ `  ( N  /  2 ) ) )  <->  -.  2  ||  ( |_ `  ( ( |_ `  ( N  /  2 ) )  /  ( 2 ^ M ) ) ) ) )
3124, 27, 303bitr4d 220 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  N )  <->  M  e.  (bits `  ( |_ `  ( N  /  2
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   1c1 8008    + caddc 8010    x. cmul 8012    / cdiv 8827   NNcn 9118   2c2 9169   NN0cn0 9377   ZZcz 9454   QQcq 9822   |_cfl 10496   ^cexp 10768    || cdvds 12306  bitscbits 12459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fl 10498  df-seqfrec 10678  df-exp 10769  df-bits 12460
This theorem is referenced by:  bitsp1e  12471  bitsp1o  12472
  Copyright terms: Public domain W3C validator