| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsp1 | GIF version | ||
| Description: The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1 | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9280 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℕ | |
| 2 | 1 | a1i 9 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ) |
| 3 | 2 | nncnd 9132 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ) |
| 4 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
| 5 | 3, 4 | expp1d 10904 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) |
| 6 | 2, 4 | nnexpcld 10925 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ) |
| 7 | 6 | nncnd 9132 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ) |
| 8 | 7, 3 | mulcomd 8176 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2↑𝑀) · 2) = (2 · (2↑𝑀))) |
| 9 | 5, 8 | eqtrd 2262 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = (2 · (2↑𝑀))) |
| 10 | 9 | oveq2d 6023 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = (𝑁 / (2 · (2↑𝑀)))) |
| 11 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ) | |
| 12 | 11 | zcnd 9578 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 13 | 2 | nnap0d 9164 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 # 0) |
| 14 | 6 | nnap0d 9164 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) # 0) |
| 15 | 12, 3, 7, 13, 14 | divdivap1d 8977 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 / 2) / (2↑𝑀)) = (𝑁 / (2 · (2↑𝑀)))) |
| 16 | 10, 15 | eqtr4d 2265 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = ((𝑁 / 2) / (2↑𝑀))) |
| 17 | 16 | fveq2d 5633 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
| 18 | znq 9827 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 / 2) ∈ ℚ) | |
| 19 | 2, 18 | syldan 282 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / 2) ∈ ℚ) |
| 20 | flqdiv 10551 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℚ ∧ (2↑𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) | |
| 21 | 19, 6, 20 | syl2anc 411 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
| 22 | 17, 21 | eqtr4d 2265 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))) |
| 23 | 22 | breq2d 4095 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 24 | 23 | notbid 671 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 25 | peano2nn0 9417 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
| 26 | bitsval2 12463 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) | |
| 27 | 25, 26 | sylan2 286 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) |
| 28 | 19 | flqcld 10505 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / 2)) ∈ ℤ) |
| 29 | bitsval2 12463 | . . 3 ⊢ (((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) | |
| 30 | 28, 29 | sylancom 420 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 31 | 24, 27, 30 | 3bitr4d 220 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 1c1 8008 + caddc 8010 · cmul 8012 / cdiv 8827 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 ⌊cfl 10496 ↑cexp 10768 ∥ cdvds 12306 bitscbits 12459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 df-seqfrec 10678 df-exp 10769 df-bits 12460 |
| This theorem is referenced by: bitsp1e 12471 bitsp1o 12472 |
| Copyright terms: Public domain | W3C validator |