ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsp1o Unicode version

Theorem bitsp1o 12135
Description: The  M  +  1-th bit of  2 N  +  1 is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 9371 . . . . . 6  |-  2  e.  ZZ
21a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3 id 19 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
42, 3zmulcld 9471 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
54peano2zd 9468 . . 3  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  ZZ )
6 bitsp1 12133 . . 3  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
75, 6sylan 283 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
8 2re 9077 . . . . . . . . . . . 12  |-  2  e.  RR
98a1i 9 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  RR )
10 zre 9347 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
119, 10remulcld 8074 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  RR )
1211recnd 8072 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
13 1cnd 8059 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  1  e.  CC )
14 2cnd 9080 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  CC )
15 2ap0 9100 . . . . . . . . . 10  |-  2 #  0
1615a1i 9 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2 #  0 )
1712, 13, 14, 16divdirapd 8873 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( ( 2  x.  N )  /  2 )  +  ( 1  /  2
) ) )
18 zcn 9348 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
1918, 14, 16divcanap3d 8839 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  /  2 )  =  N )
2019oveq1d 5940 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  /  2
)  +  ( 1  /  2 ) )  =  ( N  +  ( 1  /  2
) ) )
2117, 20eqtrd 2229 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( N  +  ( 1  /  2
) ) )
2221fveq2d 5565 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  ( |_ `  ( N  +  ( 1  /  2 ) ) ) )
23 halfge0 9224 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
24 halflt1 9225 . . . . . . . 8  |-  ( 1  /  2 )  <  1
2523, 24pm3.2i 272 . . . . . . 7  |-  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
26 1z 9369 . . . . . . . . 9  |-  1  e.  ZZ
27 2nn 9169 . . . . . . . . 9  |-  2  e.  NN
28 znq 9715 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  2  e.  NN )  ->  ( 1  /  2
)  e.  QQ )
2926, 27, 28mp2an 426 . . . . . . . 8  |-  ( 1  /  2 )  e.  QQ
30 flqbi2 10398 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( 1  /  2
)  e.  QQ )  ->  ( ( |_
`  ( N  +  ( 1  /  2
) ) )  =  N  <->  ( 0  <_ 
( 1  /  2
)  /\  ( 1  /  2 )  <  1 ) ) )
3129, 30mpan2 425 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  +  ( 1  /  2 ) ) )  =  N  <->  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 ) ) )
3225, 31mpbiri 168 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  +  ( 1  /  2
) ) )  =  N )
3322, 32eqtrd 2229 . . . . 5  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  N )
3433adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) )  =  N )
3534fveq2d 5565 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
(bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) )  =  (bits `  N )
)
3635eleq2d 2266 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( M  e.  (bits `  ( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) ) )  <->  M  e.  (bits `  N ) ) )
377, 36bitrd 188 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079   # cap 8625    / cdiv 8716   NNcn 9007   2c2 9058   NN0cn0 9266   ZZcz 9343   QQcq 9710   |_cfl 10375  bitscbits 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-seqfrec 10557  df-exp 10648  df-bits 12123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator