ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjexp Unicode version

Theorem cjexp 11319
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )

Proof of Theorem cjexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5603 . . . . 5  |-  ( j  =  0  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ 0 ) ) )
3 oveq2 5975 . . . . 5  |-  ( j  =  0  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
0 ) )
42, 3eqeq12d 2222 . . . 4  |-  ( j  =  0  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) )
54imbi2d 230 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) ) )
6 oveq2 5975 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5603 . . . . 5  |-  ( j  =  k  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ k ) ) )
8 oveq2 5975 . . . . 5  |-  ( j  =  k  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
k ) )
97, 8eqeq12d 2222 . . . 4  |-  ( j  =  k  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) )
109imbi2d 230 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) ) )
11 oveq2 5975 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5603 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 5975 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2222 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) )
1514imbi2d 230 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5975 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5603 . . . . 5  |-  ( j  =  N  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ N ) ) )
18 oveq2 5975 . . . . 5  |-  ( j  =  N  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^ N ) )
1917, 18eqeq12d 2222 . . . 4  |-  ( j  =  N  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) )
2019imbi2d 230 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) ) )
21 exp0 10725 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2221fveq2d 5603 . . . 4  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( * ` 
1 ) )
23 cjcl 11274 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
24 exp0 10725 . . . . . 6  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  1 )
25 1re 8106 . . . . . . 7  |-  1  e.  RR
26 cjre 11308 . . . . . . 7  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
2725, 26ax-mp 5 . . . . . 6  |-  ( * `
 1 )  =  1
2824, 27eqtr4di 2258 . . . . 5  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
2923, 28syl 14 . . . 4  |-  ( A  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
3022, 29eqtr4d 2243 . . 3  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( ( * `
 A ) ^
0 ) )
31 expp1 10728 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3231fveq2d 5603 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( * `  ( ( A ^
k )  x.  A
) ) )
33 expcl 10739 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
34 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
35 cjmul 11311 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3633, 34, 35syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3732, 36eqtrd 2240 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
3837adantr 276 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
39 oveq1 5974 . . . . . . . 8  |-  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
( * `  ( A ^ k ) )  x.  ( * `  A ) )  =  ( ( ( * `
 A ) ^
k )  x.  (
* `  A )
) )
40 expp1 10728 . . . . . . . . . 10  |-  ( ( ( * `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4123, 40sylan 283 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4241eqcomd 2213 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( ( * `
 A ) ^
k )  x.  (
* `  A )
)  =  ( ( * `  A ) ^ ( k  +  1 ) ) )
4339, 42sylan9eqr 2262 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( ( * `  ( A ^ k ) )  x.  ( * `
 A ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4438, 43eqtrd 2240 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4544exp31 364 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4645com12 30 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4746a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( A  e.  CC  ->  ( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
485, 10, 15, 20, 30, 47nn0ind 9522 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  (
* `  ( A ^ N ) )  =  ( ( * `  A ) ^ N
) ) )
4948impcom 125 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965   NN0cn0 9330   ^cexp 10720   *ccj 11265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270
This theorem is referenced by:  cjexpd  11384  efcj  12099
  Copyright terms: Public domain W3C validator