ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjexp Unicode version

Theorem cjexp 10902
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )

Proof of Theorem cjexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5883 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5520 . . . . 5  |-  ( j  =  0  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ 0 ) ) )
3 oveq2 5883 . . . . 5  |-  ( j  =  0  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
0 ) )
42, 3eqeq12d 2192 . . . 4  |-  ( j  =  0  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) )
54imbi2d 230 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ 0 ) )  =  ( ( * `  A
) ^ 0 ) ) ) )
6 oveq2 5883 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5520 . . . . 5  |-  ( j  =  k  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ k ) ) )
8 oveq2 5883 . . . . 5  |-  ( j  =  k  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
k ) )
97, 8eqeq12d 2192 . . . 4  |-  ( j  =  k  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) )
109imbi2d 230 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ k
) )  =  ( ( * `  A
) ^ k ) ) ) )
11 oveq2 5883 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5520 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 5883 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
1412, 13eqeq12d 2192 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) )
1514imbi2d 230 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ (
k  +  1 ) ) )  =  ( ( * `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5883 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5520 . . . . 5  |-  ( j  =  N  ->  (
* `  ( A ^ j ) )  =  ( * `  ( A ^ N ) ) )
18 oveq2 5883 . . . . 5  |-  ( j  =  N  ->  (
( * `  A
) ^ j )  =  ( ( * `
 A ) ^ N ) )
1917, 18eqeq12d 2192 . . . 4  |-  ( j  =  N  ->  (
( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j )  <->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) )
2019imbi2d 230 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( * `  ( A ^ j ) )  =  ( ( * `
 A ) ^
j ) )  <->  ( A  e.  CC  ->  ( * `  ( A ^ N
) )  =  ( ( * `  A
) ^ N ) ) ) )
21 exp0 10524 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2221fveq2d 5520 . . . 4  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( * ` 
1 ) )
23 cjcl 10857 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
24 exp0 10524 . . . . . 6  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  1 )
25 1re 7956 . . . . . . 7  |-  1  e.  RR
26 cjre 10891 . . . . . . 7  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
2725, 26ax-mp 5 . . . . . 6  |-  ( * `
 1 )  =  1
2824, 27eqtr4di 2228 . . . . 5  |-  ( ( * `  A )  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
2923, 28syl 14 . . . 4  |-  ( A  e.  CC  ->  (
( * `  A
) ^ 0 )  =  ( * ` 
1 ) )
3022, 29eqtr4d 2213 . . 3  |-  ( A  e.  CC  ->  (
* `  ( A ^ 0 ) )  =  ( ( * `
 A ) ^
0 ) )
31 expp1 10527 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3231fveq2d 5520 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( * `  ( ( A ^
k )  x.  A
) ) )
33 expcl 10538 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
34 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
35 cjmul 10894 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3633, 34, 35syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  x.  A ) )  =  ( ( * `  ( A ^ k ) )  x.  ( * `  A ) ) )
3732, 36eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
3837adantr 276 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 ( A ^
k ) )  x.  ( * `  A
) ) )
39 oveq1 5882 . . . . . . . 8  |-  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
( * `  ( A ^ k ) )  x.  ( * `  A ) )  =  ( ( ( * `
 A ) ^
k )  x.  (
* `  A )
) )
40 expp1 10527 . . . . . . . . . 10  |-  ( ( ( * `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4123, 40sylan 283 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  A ) ^ (
k  +  1 ) )  =  ( ( ( * `  A
) ^ k )  x.  ( * `  A ) ) )
4241eqcomd 2183 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( ( * `
 A ) ^
k )  x.  (
* `  A )
)  =  ( ( * `  A ) ^ ( k  +  1 ) ) )
4339, 42sylan9eqr 2232 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( ( * `  ( A ^ k ) )  x.  ( * `
 A ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4438, 43eqtrd 2210 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) )
4544exp31 364 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4645com12 30 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k )  ->  (
* `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
4746a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )  -> 
( A  e.  CC  ->  ( * `  ( A ^ ( k  +  1 ) ) )  =  ( ( * `
 A ) ^
( k  +  1 ) ) ) ) )
485, 10, 15, 20, 30, 47nn0ind 9367 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  (
* `  ( A ^ N ) )  =  ( ( * `  A ) ^ N
) ) )
4948impcom 125 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( * `  ( A ^ N ) )  =  ( ( * `
 A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816   NN0cn0 9176   ^cexp 10519   *ccj 10848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853
This theorem is referenced by:  cjexpd  10967  efcj  11681
  Copyright terms: Public domain W3C validator