ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjexp GIF version

Theorem cjexp 11123
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))

Proof of Theorem cjexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5942 . . . . . 6 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 5574 . . . . 5 (𝑗 = 0 → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑0)))
3 oveq2 5942 . . . . 5 (𝑗 = 0 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0))
42, 3eqeq12d 2219 . . . 4 (𝑗 = 0 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0)))
54imbi2d 230 . . 3 (𝑗 = 0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))))
6 oveq2 5942 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
76fveq2d 5574 . . . . 5 (𝑗 = 𝑘 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑘)))
8 oveq2 5942 . . . . 5 (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘))
97, 8eqeq12d 2219 . . . 4 (𝑗 = 𝑘 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)))
109imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))))
11 oveq2 5942 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1211fveq2d 5574 . . . . 5 (𝑗 = (𝑘 + 1) → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑(𝑘 + 1))))
13 oveq2 5942 . . . . 5 (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1)))
1412, 13eqeq12d 2219 . . . 4 (𝑗 = (𝑘 + 1) → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
16 oveq2 5942 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1716fveq2d 5574 . . . . 5 (𝑗 = 𝑁 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑁)))
18 oveq2 5942 . . . . 5 (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁))
1917, 18eqeq12d 2219 . . . 4 (𝑗 = 𝑁 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
2019imbi2d 230 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))))
21 exp0 10669 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2221fveq2d 5574 . . . 4 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = (∗‘1))
23 cjcl 11078 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
24 exp0 10669 . . . . . 6 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = 1)
25 1re 8053 . . . . . . 7 1 ∈ ℝ
26 cjre 11112 . . . . . . 7 (1 ∈ ℝ → (∗‘1) = 1)
2725, 26ax-mp 5 . . . . . 6 (∗‘1) = 1
2824, 27eqtr4di 2255 . . . . 5 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2923, 28syl 14 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
3022, 29eqtr4d 2240 . . 3 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))
31 expp1 10672 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3231fveq2d 5574 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴𝑘) · 𝐴)))
33 expcl 10683 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
34 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
35 cjmul 11115 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3633, 34, 35syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3732, 36eqtrd 2237 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3837adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
39 oveq1 5941 . . . . . . . 8 ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
40 expp1 10672 . . . . . . . . . 10 (((∗‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4123, 40sylan 283 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4241eqcomd 2210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4339, 42sylan9eqr 2259 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4438, 43eqtrd 2237 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))
4544exp31 364 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4645com12 30 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4746a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
485, 10, 15, 20, 30, 47nn0ind 9469 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
4948impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cfv 5268  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912  0cn0 9277  cexp 10664  ccj 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074
This theorem is referenced by:  cjexpd  11188  efcj  11903
  Copyright terms: Public domain W3C validator