| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) | 
| 2 | 1 | fveq2d 5562 | 
. . . . 5
⊢ (𝑗 = 0 →
(∗‘(𝐴↑𝑗)) = (∗‘(𝐴↑0))) | 
| 3 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑗 = 0 →
((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0)) | 
| 4 | 2, 3 | eqeq12d 2211 | 
. . . 4
⊢ (𝑗 = 0 →
((∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))) | 
| 5 | 4 | imbi2d 230 | 
. . 3
⊢ (𝑗 = 0 → ((𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ →
(∗‘(𝐴↑0))
= ((∗‘𝐴)↑0)))) | 
| 6 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | 
| 7 | 6 | fveq2d 5562 | 
. . . . 5
⊢ (𝑗 = 𝑘 → (∗‘(𝐴↑𝑗)) = (∗‘(𝐴↑𝑘))) | 
| 8 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘)) | 
| 9 | 7, 8 | eqeq12d 2211 | 
. . . 4
⊢ (𝑗 = 𝑘 → ((∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘))) | 
| 10 | 9 | imbi2d 230 | 
. . 3
⊢ (𝑗 = 𝑘 → ((𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)))) | 
| 11 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | 
| 12 | 11 | fveq2d 5562 | 
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (∗‘(𝐴↑𝑗)) = (∗‘(𝐴↑(𝑘 + 1)))) | 
| 13 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1))) | 
| 14 | 12, 13 | eqeq12d 2211 | 
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))) | 
| 15 | 14 | imbi2d 230 | 
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ →
(∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))) | 
| 16 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | 
| 17 | 16 | fveq2d 5562 | 
. . . . 5
⊢ (𝑗 = 𝑁 → (∗‘(𝐴↑𝑗)) = (∗‘(𝐴↑𝑁))) | 
| 18 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁)) | 
| 19 | 17, 18 | eqeq12d 2211 | 
. . . 4
⊢ (𝑗 = 𝑁 → ((∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁))) | 
| 20 | 19 | imbi2d 230 | 
. . 3
⊢ (𝑗 = 𝑁 → ((𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ →
(∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)))) | 
| 21 |   | exp0 10635 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | 
| 22 | 21 | fveq2d 5562 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
(∗‘(𝐴↑0))
= (∗‘1)) | 
| 23 |   | cjcl 11013 | 
. . . . 5
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) | 
| 24 |   | exp0 10635 | 
. . . . . 6
⊢
((∗‘𝐴)
∈ ℂ → ((∗‘𝐴)↑0) = 1) | 
| 25 |   | 1re 8025 | 
. . . . . . 7
⊢ 1 ∈
ℝ | 
| 26 |   | cjre 11047 | 
. . . . . . 7
⊢ (1 ∈
ℝ → (∗‘1) = 1) | 
| 27 | 25, 26 | ax-mp 5 | 
. . . . . 6
⊢
(∗‘1) = 1 | 
| 28 | 24, 27 | eqtr4di 2247 | 
. . . . 5
⊢
((∗‘𝐴)
∈ ℂ → ((∗‘𝐴)↑0) =
(∗‘1)) | 
| 29 | 23, 28 | syl 14 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
((∗‘𝐴)↑0)
= (∗‘1)) | 
| 30 | 22, 29 | eqtr4d 2232 | 
. . 3
⊢ (𝐴 ∈ ℂ →
(∗‘(𝐴↑0))
= ((∗‘𝐴)↑0)) | 
| 31 |   | expp1 10638 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) | 
| 32 | 31 | fveq2d 5562 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴↑𝑘) · 𝐴))) | 
| 33 |   | expcl 10649 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) | 
| 34 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) | 
| 35 |   | cjmul 11050 | 
. . . . . . . . . 10
⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) →
(∗‘((𝐴↑𝑘) · 𝐴)) = ((∗‘(𝐴↑𝑘)) · (∗‘𝐴))) | 
| 36 | 33, 34, 35 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝐴↑𝑘) · 𝐴)) = ((∗‘(𝐴↑𝑘)) · (∗‘𝐴))) | 
| 37 | 32, 36 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴↑𝑘)) · (∗‘𝐴))) | 
| 38 | 37 | adantr 276 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴↑𝑘)) · (∗‘𝐴))) | 
| 39 |   | oveq1 5929 | 
. . . . . . . 8
⊢
((∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴↑𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴))) | 
| 40 |   | expp1 10638 | 
. . . . . . . . . 10
⊢
(((∗‘𝐴)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴))) | 
| 41 | 23, 40 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴))) | 
| 42 | 41 | eqcomd 2202 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1))) | 
| 43 | 39, 42 | sylan9eqr 2251 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴↑𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1))) | 
| 44 | 38, 43 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))) | 
| 45 | 44 | exp31 364 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0
→ ((∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))) | 
| 46 | 45 | com12 30 | 
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ ((∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))) | 
| 47 | 46 | a2d 26 | 
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ ℂ
→ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ →
(∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))) | 
| 48 | 5, 10, 15, 20, 30, 47 | nn0ind 9440 | 
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁))) | 
| 49 | 48 | impcom 125 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) |