ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjexp GIF version

Theorem cjexp 11040
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
Assertion
Ref Expression
cjexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))

Proof of Theorem cjexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . . . 6 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 5559 . . . . 5 (𝑗 = 0 → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑0)))
3 oveq2 5927 . . . . 5 (𝑗 = 0 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑0))
42, 3eqeq12d 2208 . . . 4 (𝑗 = 0 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0)))
54imbi2d 230 . . 3 (𝑗 = 0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))))
6 oveq2 5927 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
76fveq2d 5559 . . . . 5 (𝑗 = 𝑘 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑘)))
8 oveq2 5927 . . . . 5 (𝑗 = 𝑘 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑘))
97, 8eqeq12d 2208 . . . 4 (𝑗 = 𝑘 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)))
109imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))))
11 oveq2 5927 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1211fveq2d 5559 . . . . 5 (𝑗 = (𝑘 + 1) → (∗‘(𝐴𝑗)) = (∗‘(𝐴↑(𝑘 + 1))))
13 oveq2 5927 . . . . 5 (𝑗 = (𝑘 + 1) → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑(𝑘 + 1)))
1412, 13eqeq12d 2208 . . . 4 (𝑗 = (𝑘 + 1) → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
16 oveq2 5927 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1716fveq2d 5559 . . . . 5 (𝑗 = 𝑁 → (∗‘(𝐴𝑗)) = (∗‘(𝐴𝑁)))
18 oveq2 5927 . . . . 5 (𝑗 = 𝑁 → ((∗‘𝐴)↑𝑗) = ((∗‘𝐴)↑𝑁))
1917, 18eqeq12d 2208 . . . 4 (𝑗 = 𝑁 → ((∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗) ↔ (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
2019imbi2d 230 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑗)) = ((∗‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))))
21 exp0 10617 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2221fveq2d 5559 . . . 4 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = (∗‘1))
23 cjcl 10995 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
24 exp0 10617 . . . . . 6 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = 1)
25 1re 8020 . . . . . . 7 1 ∈ ℝ
26 cjre 11029 . . . . . . 7 (1 ∈ ℝ → (∗‘1) = 1)
2725, 26ax-mp 5 . . . . . 6 (∗‘1) = 1
2824, 27eqtr4di 2244 . . . . 5 ((∗‘𝐴) ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
2923, 28syl 14 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴)↑0) = (∗‘1))
3022, 29eqtr4d 2229 . . 3 (𝐴 ∈ ℂ → (∗‘(𝐴↑0)) = ((∗‘𝐴)↑0))
31 expp1 10620 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3231fveq2d 5559 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = (∗‘((𝐴𝑘) · 𝐴)))
33 expcl 10631 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
34 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
35 cjmul 11032 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3633, 34, 35syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) · 𝐴)) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3732, 36eqtrd 2226 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
3837adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘(𝐴𝑘)) · (∗‘𝐴)))
39 oveq1 5926 . . . . . . . 8 ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
40 expp1 10620 . . . . . . . . . 10 (((∗‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4123, 40sylan 283 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝐴)↑(𝑘 + 1)) = (((∗‘𝐴)↑𝑘) · (∗‘𝐴)))
4241eqcomd 2199 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((∗‘𝐴)↑𝑘) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4339, 42sylan9eqr 2248 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → ((∗‘(𝐴𝑘)) · (∗‘𝐴)) = ((∗‘𝐴)↑(𝑘 + 1)))
4438, 43eqtrd 2226 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))
4544exp31 364 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4645com12 30 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘) → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
4746a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (∗‘(𝐴↑(𝑘 + 1))) = ((∗‘𝐴)↑(𝑘 + 1)))))
485, 10, 15, 20, 30, 47nn0ind 9434 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁)))
4948impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  0cn0 9243  cexp 10612  ccj 10986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991
This theorem is referenced by:  cjexpd  11105  efcj  11819
  Copyright terms: Public domain W3C validator