ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw2en Unicode version

Theorem exmidpw2en 7082
Description: The power set of a set being equinumerous to set exponentiation with a base of ordinal  2o is equivalent to excluded middle. This is Metamath 100 proof #52. The forward direction uses excluded middle expressed as EXMID to show this equinumerosity.

The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidpw2en  |-  (EXMID  <->  A. x ~P x  ~~  ( 2o 
^m  x ) )

Proof of Theorem exmidpw2en
Dummy variables  f  p  q  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 4263 . . . . 5  |-  ~P x  e.  _V
2 pp0ex 4273 . . . . . . 7  |-  { (/) ,  { (/) } }  e.  _V
3 vex 2802 . . . . . . 7  |-  x  e. 
_V
42, 3mapval 6815 . . . . . 6  |-  ( {
(/) ,  { (/) } }  ^m  x )  =  {
f  |  f : x --> { (/) ,  { (/)
} } }
5 mapex 6809 . . . . . . 7  |-  ( ( x  e.  _V  /\  {
(/) ,  { (/) } }  e.  _V )  ->  { f  |  f : x --> { (/) ,  { (/) } } }  e.  _V )
63, 2, 5mp2an 426 . . . . . 6  |-  { f  |  f : x --> { (/) ,  { (/) } } }  e.  _V
74, 6eqeltri 2302 . . . . 5  |-  ( {
(/) ,  { (/) } }  ^m  x )  e.  _V
83a1i 9 . . . . . 6  |-  (EXMID  ->  x  e.  _V )
9 0ex 4211 . . . . . . 7  |-  (/)  e.  _V
109a1i 9 . . . . . 6  |-  (EXMID  ->  (/)  e.  _V )
11 p0ex 4272 . . . . . . 7  |-  { (/) }  e.  _V
1211a1i 9 . . . . . 6  |-  (EXMID  ->  { (/) }  e.  _V )
13 0nep0 4249 . . . . . . 7  |-  (/)  =/=  { (/)
}
1413a1i 9 . . . . . 6  |-  (EXMID  ->  (/)  =/=  { (/)
} )
15 exmidexmid 4280 . . . . . . . 8  |-  (EXMID  -> DECID  p  e.  q
)
1615ralrimivw 2604 . . . . . . 7  |-  (EXMID  ->  A. q  e.  ~P  xDECID  p  e.  q )
1716ralrimivw 2604 . . . . . 6  |-  (EXMID  ->  A. p  e.  x  A. q  e.  ~P  xDECID  p  e.  q )
18 eqid 2229 . . . . . 6  |-  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/) } ,  (/) ) ) )  =  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/)
} ,  (/) ) ) )
198, 10, 12, 14, 17, 18pw2f1odc 7004 . . . . 5  |-  (EXMID  ->  (
y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/) } ,  (/) ) ) ) : ~P x -1-1-onto-> ( {
(/) ,  { (/) } }  ^m  x ) )
20 f1oen2g 6914 . . . . 5  |-  ( ( ~P x  e.  _V  /\  ( { (/) ,  { (/)
} }  ^m  x
)  e.  _V  /\  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/)
} ,  (/) ) ) ) : ~P x -1-1-onto-> ( { (/) ,  { (/) } }  ^m  x ) )  ->  ~P x  ~~  ( { (/) ,  { (/)
} }  ^m  x
) )
211, 7, 19, 20mp3an12i 1375 . . . 4  |-  (EXMID  ->  ~P x  ~~  ( { (/) ,  { (/) } }  ^m  x ) )
22 df2o2 6584 . . . . 5  |-  2o  =  { (/) ,  { (/) } }
2322oveq1i 6017 . . . 4  |-  ( 2o 
^m  x )  =  ( { (/) ,  { (/)
} }  ^m  x
)
2421, 23breqtrrdi 4125 . . 3  |-  (EXMID  ->  ~P x  ~~  ( 2o  ^m  x ) )
2524alrimiv 1920 . 2  |-  (EXMID  ->  A. x ~P x  ~~  ( 2o 
^m  x ) )
26 1oex 6576 . . . . 5  |-  1o  e.  _V
27 pweq 3652 . . . . . 6  |-  ( x  =  1o  ->  ~P x  =  ~P 1o )
28 oveq2 6015 . . . . . 6  |-  ( x  =  1o  ->  ( 2o  ^m  x )  =  ( 2o  ^m  1o ) )
2927, 28breq12d 4096 . . . . 5  |-  ( x  =  1o  ->  ( ~P x  ~~  ( 2o 
^m  x )  <->  ~P 1o  ~~  ( 2o  ^m  1o ) ) )
3026, 29spcv 2897 . . . 4  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  ->  ~P 1o  ~~  ( 2o 
^m  1o ) )
31 df1o2 6582 . . . . . 6  |-  1o  =  { (/) }
3231oveq2i 6018 . . . . 5  |-  ( 2o 
^m  1o )  =  ( 2o  ^m  { (/)
} )
3322, 2eqeltri 2302 . . . . . 6  |-  2o  e.  _V
3433, 9mapsnen 6972 . . . . 5  |-  ( 2o 
^m  { (/) } ) 
~~  2o
3532, 34eqbrtri 4104 . . . 4  |-  ( 2o 
^m  1o )  ~~  2o
36 entr 6944 . . . 4  |-  ( ( ~P 1o  ~~  ( 2o  ^m  1o )  /\  ( 2o  ^m  1o ) 
~~  2o )  ->  ~P 1o  ~~  2o )
3730, 35, 36sylancl 413 . . 3  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  ->  ~P 1o  ~~  2o )
38 exmidpw 7078 . . 3  |-  (EXMID  <->  ~P 1o  ~~  2o )
3937, 38sylibr 134 . 2  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  -> EXMID )
4025, 39impbii 126 1  |-  (EXMID  <->  A. x ~P x  ~~  ( 2o 
^m  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 839   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215    =/= wne 2400   A.wral 2508   _Vcvv 2799   (/)c0 3491   ifcif 3602   ~Pcpw 3649   {csn 3666   {cpr 3667   class class class wbr 4083    |-> cmpt 4145  EXMIDwem 4278   -->wf 5314   -1-1-onto->wf1o 5317  (class class class)co 6007   1oc1o 6561   2oc2o 6562    ^m cmap 6803    ~~ cen 6893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-exmid 4279  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-er 6688  df-map 6805  df-en 6896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator