| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw2en | Unicode version | ||
| Description: The power set of a set
being equinumerous to set exponentiation with a
base of ordinal The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidpw2en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 4263 |
. . . . 5
| |
| 2 | pp0ex 4273 |
. . . . . . 7
| |
| 3 | vex 2802 |
. . . . . . 7
| |
| 4 | 2, 3 | mapval 6815 |
. . . . . 6
|
| 5 | mapex 6809 |
. . . . . . 7
| |
| 6 | 3, 2, 5 | mp2an 426 |
. . . . . 6
|
| 7 | 4, 6 | eqeltri 2302 |
. . . . 5
|
| 8 | 3 | a1i 9 |
. . . . . 6
|
| 9 | 0ex 4211 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | p0ex 4272 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | 0nep0 4249 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | exmidexmid 4280 |
. . . . . . . 8
| |
| 16 | 15 | ralrimivw 2604 |
. . . . . . 7
|
| 17 | 16 | ralrimivw 2604 |
. . . . . 6
|
| 18 | eqid 2229 |
. . . . . 6
| |
| 19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 7004 |
. . . . 5
|
| 20 | f1oen2g 6914 |
. . . . 5
| |
| 21 | 1, 7, 19, 20 | mp3an12i 1375 |
. . . 4
|
| 22 | df2o2 6584 |
. . . . 5
| |
| 23 | 22 | oveq1i 6017 |
. . . 4
|
| 24 | 21, 23 | breqtrrdi 4125 |
. . 3
|
| 25 | 24 | alrimiv 1920 |
. 2
|
| 26 | 1oex 6576 |
. . . . 5
| |
| 27 | pweq 3652 |
. . . . . 6
| |
| 28 | oveq2 6015 |
. . . . . 6
| |
| 29 | 27, 28 | breq12d 4096 |
. . . . 5
|
| 30 | 26, 29 | spcv 2897 |
. . . 4
|
| 31 | df1o2 6582 |
. . . . . 6
| |
| 32 | 31 | oveq2i 6018 |
. . . . 5
|
| 33 | 22, 2 | eqeltri 2302 |
. . . . . 6
|
| 34 | 33, 9 | mapsnen 6972 |
. . . . 5
|
| 35 | 32, 34 | eqbrtri 4104 |
. . . 4
|
| 36 | entr 6944 |
. . . 4
| |
| 37 | 30, 35, 36 | sylancl 413 |
. . 3
|
| 38 | exmidpw 7078 |
. . 3
| |
| 39 | 37, 38 | sylibr 134 |
. 2
|
| 40 | 25, 39 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-exmid 4279 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-1o 6568 df-2o 6569 df-er 6688 df-map 6805 df-en 6896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |