ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw2en Unicode version

Theorem exmidpw2en 6973
Description: The power set of a set being equinumerous to set exponentiation with a base of ordinal  2o is equivalent to excluded middle. This is Metamath 100 proof #52. The forward direction uses excluded middle expressed as EXMID to show this equinumerosity.

The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidpw2en  |-  (EXMID  <->  A. x ~P x  ~~  ( 2o 
^m  x ) )

Proof of Theorem exmidpw2en
Dummy variables  f  p  q  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 4212 . . . . 5  |-  ~P x  e.  _V
2 pp0ex 4222 . . . . . . 7  |-  { (/) ,  { (/) } }  e.  _V
3 vex 2766 . . . . . . 7  |-  x  e. 
_V
42, 3mapval 6719 . . . . . 6  |-  ( {
(/) ,  { (/) } }  ^m  x )  =  {
f  |  f : x --> { (/) ,  { (/)
} } }
5 mapex 6713 . . . . . . 7  |-  ( ( x  e.  _V  /\  {
(/) ,  { (/) } }  e.  _V )  ->  { f  |  f : x --> { (/) ,  { (/) } } }  e.  _V )
63, 2, 5mp2an 426 . . . . . 6  |-  { f  |  f : x --> { (/) ,  { (/) } } }  e.  _V
74, 6eqeltri 2269 . . . . 5  |-  ( {
(/) ,  { (/) } }  ^m  x )  e.  _V
83a1i 9 . . . . . 6  |-  (EXMID  ->  x  e.  _V )
9 0ex 4160 . . . . . . 7  |-  (/)  e.  _V
109a1i 9 . . . . . 6  |-  (EXMID  ->  (/)  e.  _V )
11 p0ex 4221 . . . . . . 7  |-  { (/) }  e.  _V
1211a1i 9 . . . . . 6  |-  (EXMID  ->  { (/) }  e.  _V )
13 0nep0 4198 . . . . . . 7  |-  (/)  =/=  { (/)
}
1413a1i 9 . . . . . 6  |-  (EXMID  ->  (/)  =/=  { (/)
} )
15 exmidexmid 4229 . . . . . . . 8  |-  (EXMID  -> DECID  p  e.  q
)
1615ralrimivw 2571 . . . . . . 7  |-  (EXMID  ->  A. q  e.  ~P  xDECID  p  e.  q )
1716ralrimivw 2571 . . . . . 6  |-  (EXMID  ->  A. p  e.  x  A. q  e.  ~P  xDECID  p  e.  q )
18 eqid 2196 . . . . . 6  |-  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/) } ,  (/) ) ) )  =  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/)
} ,  (/) ) ) )
198, 10, 12, 14, 17, 18pw2f1odc 6896 . . . . 5  |-  (EXMID  ->  (
y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/) } ,  (/) ) ) ) : ~P x -1-1-onto-> ( {
(/) ,  { (/) } }  ^m  x ) )
20 f1oen2g 6814 . . . . 5  |-  ( ( ~P x  e.  _V  /\  ( { (/) ,  { (/)
} }  ^m  x
)  e.  _V  /\  ( y  e.  ~P x  |->  ( z  e.  x  |->  if ( z  e.  y ,  { (/)
} ,  (/) ) ) ) : ~P x -1-1-onto-> ( { (/) ,  { (/) } }  ^m  x ) )  ->  ~P x  ~~  ( { (/) ,  { (/)
} }  ^m  x
) )
211, 7, 19, 20mp3an12i 1352 . . . 4  |-  (EXMID  ->  ~P x  ~~  ( { (/) ,  { (/) } }  ^m  x ) )
22 df2o2 6489 . . . . 5  |-  2o  =  { (/) ,  { (/) } }
2322oveq1i 5932 . . . 4  |-  ( 2o 
^m  x )  =  ( { (/) ,  { (/)
} }  ^m  x
)
2421, 23breqtrrdi 4075 . . 3  |-  (EXMID  ->  ~P x  ~~  ( 2o  ^m  x ) )
2524alrimiv 1888 . 2  |-  (EXMID  ->  A. x ~P x  ~~  ( 2o 
^m  x ) )
26 1oex 6482 . . . . 5  |-  1o  e.  _V
27 pweq 3608 . . . . . 6  |-  ( x  =  1o  ->  ~P x  =  ~P 1o )
28 oveq2 5930 . . . . . 6  |-  ( x  =  1o  ->  ( 2o  ^m  x )  =  ( 2o  ^m  1o ) )
2927, 28breq12d 4046 . . . . 5  |-  ( x  =  1o  ->  ( ~P x  ~~  ( 2o 
^m  x )  <->  ~P 1o  ~~  ( 2o  ^m  1o ) ) )
3026, 29spcv 2858 . . . 4  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  ->  ~P 1o  ~~  ( 2o 
^m  1o ) )
31 df1o2 6487 . . . . . 6  |-  1o  =  { (/) }
3231oveq2i 5933 . . . . 5  |-  ( 2o 
^m  1o )  =  ( 2o  ^m  { (/)
} )
3322, 2eqeltri 2269 . . . . . 6  |-  2o  e.  _V
3433, 9mapsnen 6870 . . . . 5  |-  ( 2o 
^m  { (/) } ) 
~~  2o
3532, 34eqbrtri 4054 . . . 4  |-  ( 2o 
^m  1o )  ~~  2o
36 entr 6843 . . . 4  |-  ( ( ~P 1o  ~~  ( 2o  ^m  1o )  /\  ( 2o  ^m  1o ) 
~~  2o )  ->  ~P 1o  ~~  2o )
3730, 35, 36sylancl 413 . . 3  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  ->  ~P 1o  ~~  2o )
38 exmidpw 6969 . . 3  |-  (EXMID  <->  ~P 1o  ~~  2o )
3937, 38sylibr 134 . 2  |-  ( A. x ~P x  ~~  ( 2o  ^m  x )  -> EXMID )
4025, 39impbii 126 1  |-  (EXMID  <->  A. x ~P x  ~~  ( 2o 
^m  x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182    =/= wne 2367   A.wral 2475   _Vcvv 2763   (/)c0 3450   ifcif 3561   ~Pcpw 3605   {csn 3622   {cpr 3623   class class class wbr 4033    |-> cmpt 4094  EXMIDwem 4227   -->wf 5254   -1-1-onto->wf1o 5257  (class class class)co 5922   1oc1o 6467   2oc2o 6468    ^m cmap 6707    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-exmid 4228  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-er 6592  df-map 6709  df-en 6800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator