| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw2en | Unicode version | ||
| Description: The power set of a set
being equinumerous to set exponentiation with a
base of ordinal The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidpw2en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 4213 |
. . . . 5
| |
| 2 | pp0ex 4223 |
. . . . . . 7
| |
| 3 | vex 2766 |
. . . . . . 7
| |
| 4 | 2, 3 | mapval 6728 |
. . . . . 6
|
| 5 | mapex 6722 |
. . . . . . 7
| |
| 6 | 3, 2, 5 | mp2an 426 |
. . . . . 6
|
| 7 | 4, 6 | eqeltri 2269 |
. . . . 5
|
| 8 | 3 | a1i 9 |
. . . . . 6
|
| 9 | 0ex 4161 |
. . . . . . 7
| |
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | p0ex 4222 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | 0nep0 4199 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | exmidexmid 4230 |
. . . . . . . 8
| |
| 16 | 15 | ralrimivw 2571 |
. . . . . . 7
|
| 17 | 16 | ralrimivw 2571 |
. . . . . 6
|
| 18 | eqid 2196 |
. . . . . 6
| |
| 19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 6905 |
. . . . 5
|
| 20 | f1oen2g 6823 |
. . . . 5
| |
| 21 | 1, 7, 19, 20 | mp3an12i 1352 |
. . . 4
|
| 22 | df2o2 6498 |
. . . . 5
| |
| 23 | 22 | oveq1i 5935 |
. . . 4
|
| 24 | 21, 23 | breqtrrdi 4076 |
. . 3
|
| 25 | 24 | alrimiv 1888 |
. 2
|
| 26 | 1oex 6491 |
. . . . 5
| |
| 27 | pweq 3609 |
. . . . . 6
| |
| 28 | oveq2 5933 |
. . . . . 6
| |
| 29 | 27, 28 | breq12d 4047 |
. . . . 5
|
| 30 | 26, 29 | spcv 2858 |
. . . 4
|
| 31 | df1o2 6496 |
. . . . . 6
| |
| 32 | 31 | oveq2i 5936 |
. . . . 5
|
| 33 | 22, 2 | eqeltri 2269 |
. . . . . 6
|
| 34 | 33, 9 | mapsnen 6879 |
. . . . 5
|
| 35 | 32, 34 | eqbrtri 4055 |
. . . 4
|
| 36 | entr 6852 |
. . . 4
| |
| 37 | 30, 35, 36 | sylancl 413 |
. . 3
|
| 38 | exmidpw 6978 |
. . 3
| |
| 39 | 37, 38 | sylibr 134 |
. 2
|
| 40 | 25, 39 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-exmid 4229 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-1o 6483 df-2o 6484 df-er 6601 df-map 6718 df-en 6809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |