| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidpw2en | Unicode version | ||
| Description: The power set of a set
being equinumerous to set exponentiation with a
       base of ordinal  The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)  | 
| Ref | Expression | 
|---|---|
| exmidpw2en | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vpwex 4212 | 
. . . . 5
 | |
| 2 | pp0ex 4222 | 
. . . . . . 7
 | |
| 3 | vex 2766 | 
. . . . . . 7
 | |
| 4 | 2, 3 | mapval 6719 | 
. . . . . 6
 | 
| 5 | mapex 6713 | 
. . . . . . 7
 | |
| 6 | 3, 2, 5 | mp2an 426 | 
. . . . . 6
 | 
| 7 | 4, 6 | eqeltri 2269 | 
. . . . 5
 | 
| 8 | 3 | a1i 9 | 
. . . . . 6
 | 
| 9 | 0ex 4160 | 
. . . . . . 7
 | |
| 10 | 9 | a1i 9 | 
. . . . . 6
 | 
| 11 | p0ex 4221 | 
. . . . . . 7
 | |
| 12 | 11 | a1i 9 | 
. . . . . 6
 | 
| 13 | 0nep0 4198 | 
. . . . . . 7
 | |
| 14 | 13 | a1i 9 | 
. . . . . 6
 | 
| 15 | exmidexmid 4229 | 
. . . . . . . 8
 | |
| 16 | 15 | ralrimivw 2571 | 
. . . . . . 7
 | 
| 17 | 16 | ralrimivw 2571 | 
. . . . . 6
 | 
| 18 | eqid 2196 | 
. . . . . 6
 | |
| 19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 6896 | 
. . . . 5
 | 
| 20 | f1oen2g 6814 | 
. . . . 5
 | |
| 21 | 1, 7, 19, 20 | mp3an12i 1352 | 
. . . 4
 | 
| 22 | df2o2 6489 | 
. . . . 5
 | |
| 23 | 22 | oveq1i 5932 | 
. . . 4
 | 
| 24 | 21, 23 | breqtrrdi 4075 | 
. . 3
 | 
| 25 | 24 | alrimiv 1888 | 
. 2
 | 
| 26 | 1oex 6482 | 
. . . . 5
 | |
| 27 | pweq 3608 | 
. . . . . 6
 | |
| 28 | oveq2 5930 | 
. . . . . 6
 | |
| 29 | 27, 28 | breq12d 4046 | 
. . . . 5
 | 
| 30 | 26, 29 | spcv 2858 | 
. . . 4
 | 
| 31 | df1o2 6487 | 
. . . . . 6
 | |
| 32 | 31 | oveq2i 5933 | 
. . . . 5
 | 
| 33 | 22, 2 | eqeltri 2269 | 
. . . . . 6
 | 
| 34 | 33, 9 | mapsnen 6870 | 
. . . . 5
 | 
| 35 | 32, 34 | eqbrtri 4054 | 
. . . 4
 | 
| 36 | entr 6843 | 
. . . 4
 | |
| 37 | 30, 35, 36 | sylancl 413 | 
. . 3
 | 
| 38 | exmidpw 6969 | 
. . 3
 | |
| 39 | 37, 38 | sylibr 134 | 
. 2
 | 
| 40 | 25, 39 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-exmid 4228 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-1o 6474 df-2o 6475 df-er 6592 df-map 6709 df-en 6800 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |