Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > logrpap0 | Unicode version |
Description: The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.) |
Ref | Expression |
---|---|
logrpap0 | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logrpap0b 13676 | . 2 # # | |
2 | 1 | biimpa 294 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2142 class class class wbr 3990 cfv 5200 cc0 7778 c1 7779 # cap 8504 crp 9614 clog 13656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-mulrcl 7877 ax-addcom 7878 ax-mulcom 7879 ax-addass 7880 ax-mulass 7881 ax-distr 7882 ax-i2m1 7883 ax-0lt1 7884 ax-1rid 7885 ax-0id 7886 ax-rnegex 7887 ax-precex 7888 ax-cnre 7889 ax-pre-ltirr 7890 ax-pre-ltwlin 7891 ax-pre-lttrn 7892 ax-pre-apti 7893 ax-pre-ltadd 7894 ax-pre-mulgt0 7895 ax-pre-mulext 7896 ax-arch 7897 ax-caucvg 7898 ax-pre-suploc 7899 ax-addf 7900 ax-mulf 7901 |
This theorem depends on definitions: df-bi 116 df-stab 827 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-disj 3968 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-po 4282 df-iso 4283 df-iord 4352 df-on 4354 df-ilim 4355 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-isom 5209 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-of 6065 df-1st 6123 df-2nd 6124 df-recs 6288 df-irdg 6353 df-frec 6374 df-1o 6399 df-oadd 6403 df-er 6517 df-map 6632 df-pm 6633 df-en 6723 df-dom 6724 df-fin 6725 df-sup 6965 df-inf 6966 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 df-sub 8096 df-neg 8097 df-reap 8498 df-ap 8505 df-div 8594 df-inn 8883 df-2 8941 df-3 8942 df-4 8943 df-n0 9140 df-z 9217 df-uz 9492 df-q 9583 df-rp 9615 df-xneg 9733 df-xadd 9734 df-ioo 9853 df-ico 9855 df-icc 9856 df-fz 9970 df-fzo 10103 df-seqfrec 10406 df-exp 10480 df-fac 10664 df-bc 10686 df-ihash 10714 df-shft 10783 df-cj 10810 df-re 10811 df-im 10812 df-rsqrt 10966 df-abs 10967 df-clim 11246 df-sumdc 11321 df-ef 11615 df-e 11616 df-rest 12585 df-topgen 12604 df-psmet 12866 df-xmet 12867 df-met 12868 df-bl 12869 df-mopn 12870 df-top 12875 df-topon 12888 df-bases 12920 df-ntr 12975 df-cn 13067 df-cnp 13068 df-tx 13132 df-cncf 13437 df-limced 13504 df-dvap 13505 df-relog 13658 |
This theorem is referenced by: rplogbid1 13744 rplogb1 13745 |
Copyright terms: Public domain | W3C validator |