| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mul02d | GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| mul02d | ⊢ (𝜑 → (0 · 𝐴) = 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mul02 8413 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 · 𝐴) = 0) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 | 
| This theorem is referenced by: mulneg1 8421 mulap0r 8642 mulap0 8681 un0mulcl 9283 mul2lt0rgt0 9835 mul2lt0np 9838 lincmb01cmp 10078 iccf1o 10079 bcval5 10855 hashxp 10918 remul2 11038 immul2 11045 fsumconst 11619 binomlem 11648 fprodeq0 11782 fprodeq0g 11803 efne0 11843 dvds0 11971 mulmoddvds 12028 mulgcd 12183 bezoutr1 12200 lcmgcd 12246 qnumgt0 12366 pcexp 12478 mulgnn0ass 13288 dvmptcmulcn 14957 dvef 14963 ply1termlem 14978 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 sin0pilem1 15017 sinhalfpip 15056 sinhalfpim 15057 coshalfpip 15058 coshalfpim 15059 lgsdir2 15274 lgsdir 15276 lgsdirnn0 15288 lgsdinn0 15289 lgsquad2lem2 15323 | 
| Copyright terms: Public domain | W3C validator |