Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul02d | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mul02d | ⊢ (𝜑 → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul02 8281 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 · 𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 0cc0 7749 · cmul 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 |
This theorem is referenced by: mulneg1 8289 mulap0r 8509 mulap0 8547 un0mulcl 9144 mul2lt0rgt0 9692 mul2lt0np 9695 lincmb01cmp 9935 iccf1o 9936 bcval5 10672 hashxp 10735 remul2 10811 immul2 10818 fsumconst 11391 binomlem 11420 fprodeq0 11554 fprodeq0g 11575 efne0 11615 dvds0 11742 mulmoddvds 11797 mulgcd 11945 bezoutr1 11962 lcmgcd 12006 qnumgt0 12126 pcexp 12237 dvmptcmulcn 13283 dvef 13288 sin0pilem1 13302 sinhalfpip 13341 sinhalfpim 13342 coshalfpip 13343 coshalfpim 13344 lgsdir2 13534 lgsdir 13536 lgsdirnn0 13548 lgsdinn0 13549 |
Copyright terms: Public domain | W3C validator |