| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02d | GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul02d | ⊢ (𝜑 → (0 · 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mul02 8541 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 · 𝐴) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 · cmul 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 |
| This theorem is referenced by: mulneg1 8549 mulap0r 8770 mulap0 8809 un0mulcl 9411 mul2lt0rgt0 9964 mul2lt0np 9967 lincmb01cmp 10207 iccf1o 10208 bcval5 10993 hashxp 11056 remul2 11392 immul2 11399 fsumconst 11973 binomlem 12002 fprodeq0 12136 fprodeq0g 12157 efne0 12197 dvds0 12325 mulmoddvds 12382 mulgcd 12545 bezoutr1 12562 lcmgcd 12608 qnumgt0 12728 pcexp 12840 mulgnn0ass 13703 dvmptcmulcn 15403 dvef 15409 ply1termlem 15424 plyaddlem1 15429 plymullem1 15430 plycoeid3 15439 sin0pilem1 15463 sinhalfpip 15502 sinhalfpim 15503 coshalfpip 15504 coshalfpim 15505 lgsdir2 15720 lgsdir 15722 lgsdirnn0 15734 lgsdinn0 15735 lgsquad2lem2 15769 |
| Copyright terms: Public domain | W3C validator |