| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul02d | GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul02d | ⊢ (𝜑 → (0 · 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mul02 8466 | . 2 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 · 𝐴) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 · cmul 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sub 8252 |
| This theorem is referenced by: mulneg1 8474 mulap0r 8695 mulap0 8734 un0mulcl 9336 mul2lt0rgt0 9889 mul2lt0np 9892 lincmb01cmp 10132 iccf1o 10133 bcval5 10915 hashxp 10978 remul2 11228 immul2 11235 fsumconst 11809 binomlem 11838 fprodeq0 11972 fprodeq0g 11993 efne0 12033 dvds0 12161 mulmoddvds 12218 mulgcd 12381 bezoutr1 12398 lcmgcd 12444 qnumgt0 12564 pcexp 12676 mulgnn0ass 13538 dvmptcmulcn 15237 dvef 15243 ply1termlem 15258 plyaddlem1 15263 plymullem1 15264 plycoeid3 15273 sin0pilem1 15297 sinhalfpip 15336 sinhalfpim 15337 coshalfpip 15338 coshalfpim 15339 lgsdir2 15554 lgsdir 15556 lgsdirnn0 15568 lgsdinn0 15569 lgsquad2lem2 15603 |
| Copyright terms: Public domain | W3C validator |