ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02d GIF version

Theorem mul02d 7967
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mul02d (𝜑 → (0 · 𝐴) = 0)

Proof of Theorem mul02d
StepHypRef Expression
1 mul01d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mul02 7962 . 2 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
31, 2syl 14 1 (𝜑 → (0 · 𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445  (class class class)co 5690  cc 7445  0cc0 7447   · cmul 7452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-setind 4381  ax-resscn 7534  ax-1cn 7535  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-sub 7752
This theorem is referenced by:  mulneg1  7970  mulap0r  8189  mulap0  8220  un0mulcl  8805  lincmb01cmp  9569  iccf1o  9570  bcval5  10286  hashxp  10349  remul2  10422  immul2  10429  fsumconst  10997  binomlem  11026  efne0  11117  dvds0  11238  mulmoddvds  11291  mulgcd  11432  bezoutr1  11449  lcmgcd  11487  qnumgt0  11603
  Copyright terms: Public domain W3C validator