ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlsubg Unicode version

Theorem lidlsubg 14458
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
lidlcl.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
lidlsubg  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R )
)

Proof of Theorem lidlsubg
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 lidlcl.u . . . 4  |-  U  =  (LIdeal `  R )
31, 2lidlss 14448 . . 3  |-  ( I  e.  U  ->  I  C_  ( Base `  R
) )
43adantl 277 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  C_  ( Base `  R
) )
5 eqid 2229 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
62, 5lidl0cl 14455 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( 0g `  R )  e.  I )
7 elex2 2816 . . 3  |-  ( ( 0g `  R )  e.  I  ->  E. j 
j  e.  I )
86, 7syl 14 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  E. j 
j  e.  I )
9 eqid 2229 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
102, 9lidlacl 14456 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( x  e.  I  /\  y  e.  I ) )  -> 
( x ( +g  `  R ) y )  e.  I )
1110anassrs 400 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  U
)  /\  x  e.  I )  /\  y  e.  I )  ->  (
x ( +g  `  R
) y )  e.  I )
1211ralrimiva 2603 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  A. y  e.  I  ( x
( +g  `  R ) y )  e.  I
)
13 eqid 2229 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
142, 13lidlnegcl 14457 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  x  e.  I )  ->  (
( invg `  R ) `  x
)  e.  I )
15143expa 1227 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  ( ( invg `  R ) `
 x )  e.  I )
1612, 15jca 306 . . 3  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  ( A. y  e.  I  (
x ( +g  `  R
) y )  e.  I  /\  ( ( invg `  R
) `  x )  e.  I ) )
1716ralrimiva 2603 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  A. x  e.  I  ( A. y  e.  I  (
x ( +g  `  R
) y )  e.  I  /\  ( ( invg `  R
) `  x )  e.  I ) )
18 ringgrp 13972 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
1918adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  R  e.  Grp )
201, 9, 13issubg2m 13734 . . 3  |-  ( R  e.  Grp  ->  (
I  e.  (SubGrp `  R )  <->  ( I  C_  ( Base `  R
)  /\  E. j 
j  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x ( +g  `  R ) y )  e.  I  /\  (
( invg `  R ) `  x
)  e.  I ) ) ) )
2119, 20syl 14 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  (
I  e.  (SubGrp `  R )  <->  ( I  C_  ( Base `  R
)  /\  E. j 
j  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x ( +g  `  R ) y )  e.  I  /\  (
( invg `  R ) `  x
)  e.  I ) ) ) )
224, 8, 17, 21mpbir3and 1204 1  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318  (class class class)co 6007   Basecbs 13040   +g cplusg 13118   0gc0g 13297   Grpcgrp 13541   invgcminusg 13542  SubGrpcsubg 13712   Ringcrg 13967  LIdealclidl 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546  df-subg 13715  df-mgp 13892  df-ur 13931  df-ring 13969  df-subrg 14191  df-lmod 14261  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441
This theorem is referenced by:  lidlsubcl  14459  dflidl2  14460  df2idl2  14481  2idlcpbl  14496  qus1  14498  qusrhm  14500  qusmul2  14501  quscrng  14505  zndvds  14621
  Copyright terms: Public domain W3C validator