ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlsubg Unicode version

Theorem lidlsubg 13985
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
lidlcl.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
lidlsubg  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R )
)

Proof of Theorem lidlsubg
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 lidlcl.u . . . 4  |-  U  =  (LIdeal `  R )
31, 2lidlss 13975 . . 3  |-  ( I  e.  U  ->  I  C_  ( Base `  R
) )
43adantl 277 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  C_  ( Base `  R
) )
5 eqid 2193 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
62, 5lidl0cl 13982 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  ( 0g `  R )  e.  I )
7 elex2 2776 . . 3  |-  ( ( 0g `  R )  e.  I  ->  E. j 
j  e.  I )
86, 7syl 14 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  E. j 
j  e.  I )
9 eqid 2193 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
102, 9lidlacl 13983 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( x  e.  I  /\  y  e.  I ) )  -> 
( x ( +g  `  R ) y )  e.  I )
1110anassrs 400 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  U
)  /\  x  e.  I )  /\  y  e.  I )  ->  (
x ( +g  `  R
) y )  e.  I )
1211ralrimiva 2567 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  A. y  e.  I  ( x
( +g  `  R ) y )  e.  I
)
13 eqid 2193 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
142, 13lidlnegcl 13984 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  x  e.  I )  ->  (
( invg `  R ) `  x
)  e.  I )
15143expa 1205 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  ( ( invg `  R ) `
 x )  e.  I )
1612, 15jca 306 . . 3  |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  x  e.  I
)  ->  ( A. y  e.  I  (
x ( +g  `  R
) y )  e.  I  /\  ( ( invg `  R
) `  x )  e.  I ) )
1716ralrimiva 2567 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  A. x  e.  I  ( A. y  e.  I  (
x ( +g  `  R
) y )  e.  I  /\  ( ( invg `  R
) `  x )  e.  I ) )
18 ringgrp 13500 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
1918adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  R  e.  Grp )
201, 9, 13issubg2m 13262 . . 3  |-  ( R  e.  Grp  ->  (
I  e.  (SubGrp `  R )  <->  ( I  C_  ( Base `  R
)  /\  E. j 
j  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x ( +g  `  R ) y )  e.  I  /\  (
( invg `  R ) `  x
)  e.  I ) ) ) )
2119, 20syl 14 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  (
I  e.  (SubGrp `  R )  <->  ( I  C_  ( Base `  R
)  /\  E. j 
j  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x ( +g  `  R ) y )  e.  I  /\  (
( invg `  R ) `  x
)  e.  I ) ) ) )
224, 8, 17, 21mpbir3and 1182 1  |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076  SubGrpcsubg 13240   Ringcrg 13495  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-mgp 13420  df-ur 13459  df-ring 13497  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by:  lidlsubcl  13986  dflidl2  13987  df2idl2  14008  2idlcpbl  14023  qus1  14025  qusrhm  14027  qusmul2  14028  quscrng  14032  zndvds  14148
  Copyright terms: Public domain W3C validator