Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminltinf GIF version

Theorem xrminltinf 11074
 Description: Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
Assertion
Ref Expression
xrminltinf ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))

Proof of Theorem xrminltinf
StepHypRef Expression
1 xnegcl 9646 . . . 4 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
213ad2ant2 1004 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*)
3 xnegcl 9646 . . . 4 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
433ad2ant3 1005 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*)
5 xnegcl 9646 . . . 4 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
653ad2ant1 1003 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*)
7 xrltmaxsup 11059 . . 3 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
82, 4, 6, 7syl3anc 1217 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
9 xrminmax 11067 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
1093adant1 1000 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))
11 xnegneg 9647 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
1211eqcomd 2146 . . . . 5 (𝐴 ∈ ℝ*𝐴 = -𝑒-𝑒𝐴)
13123ad2ant1 1003 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 = -𝑒-𝑒𝐴)
1410, 13breq12d 3950 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
15 xrmaxcl 11054 . . . . 5 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
162, 4, 15syl2anc 409 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*)
17 xltneg 9650 . . . 4 ((-𝑒𝐴 ∈ ℝ* ∧ sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
186, 16, 17syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴))
1914, 18bitr4d 190 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )))
20 simp2 983 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
21 simp1 982 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
22 xltneg 9650 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
2320, 21, 22syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
24 simp3 984 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
25 xltneg 9650 . . . 4 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶))
2624, 21, 25syl2anc 409 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶))
2723, 26orbi12d 783 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐴𝐶 < 𝐴) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶)))
288, 19, 273bitr4d 219 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   ∨ wo 698   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  {cpr 3533   class class class wbr 3937  supcsup 6877  infcinf 6878  ℝ*cxr 7824   < clt 7825  -𝑒cxne 9587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-precex 7755  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-apti 7760  ax-pre-ltadd 7761  ax-pre-mulgt0 7762  ax-pre-mulext 7763  ax-arch 7764  ax-caucvg 7765 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-reap 8362  df-ap 8369  df-div 8458  df-inn 8746  df-2 8804  df-3 8805  df-4 8806  df-n0 9003  df-z 9080  df-uz 9352  df-rp 9472  df-xneg 9590  df-seqfrec 10251  df-exp 10325  df-cj 10647  df-re 10648  df-im 10649  df-rsqrt 10803  df-abs 10804 This theorem is referenced by:  bdbl  12712
 Copyright terms: Public domain W3C validator