![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrminltinf | GIF version |
Description: Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.) |
Ref | Expression |
---|---|
xrminltinf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl 9456 | . . . 4 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
2 | 1 | 3ad2ant2 971 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐵 ∈ ℝ*) |
3 | xnegcl 9456 | . . . 4 ⊢ (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*) | |
4 | 3 | 3ad2ant3 972 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐶 ∈ ℝ*) |
5 | xnegcl 9456 | . . . 4 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
6 | 5 | 3ad2ant1 970 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → -𝑒𝐴 ∈ ℝ*) |
7 | xrltmaxsup 10865 | . . 3 ⊢ ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶))) | |
8 | 2, 4, 6, 7 | syl3anc 1184 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶))) |
9 | xrminmax 10873 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) | |
10 | 9 | 3adant1 967 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) = -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < )) |
11 | xnegneg 9457 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | |
12 | 11 | eqcomd 2105 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 = -𝑒-𝑒𝐴) |
13 | 12 | 3ad2ant1 970 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 = -𝑒-𝑒𝐴) |
14 | 10, 13 | breq12d 3888 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴)) |
15 | xrmaxcl 10860 | . . . . 5 ⊢ ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) | |
16 | 2, 4, 15 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) |
17 | xltneg 9460 | . . . 4 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴)) | |
18 | 6, 16, 17 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (-𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ) < -𝑒-𝑒𝐴)) |
19 | 14, 18 | bitr4d 190 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ -𝑒𝐴 < sup({-𝑒𝐵, -𝑒𝐶}, ℝ*, < ))) |
20 | simp2 950 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
21 | simp1 949 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
22 | xltneg 9460 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵)) | |
23 | 20, 21, 22 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵)) |
24 | simp3 951 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*) | |
25 | xltneg 9460 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶)) | |
26 | 24, 21, 25 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐶)) |
27 | 23, 26 | orbi12d 748 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐴 ∨ 𝐶 < 𝐴) ↔ (-𝑒𝐴 < -𝑒𝐵 ∨ -𝑒𝐴 < -𝑒𝐶))) |
28 | 8, 19, 27 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 670 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 {cpr 3475 class class class wbr 3875 supcsup 6784 infcinf 6785 ℝ*cxr 7671 < clt 7672 -𝑒cxne 9397 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 ax-caucvg 7615 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-isom 5068 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-frec 6218 df-sup 6786 df-inf 6787 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-n0 8830 df-z 8907 df-uz 9177 df-rp 9292 df-xneg 9400 df-seqfrec 10060 df-exp 10134 df-cj 10455 df-re 10456 df-im 10457 df-rsqrt 10610 df-abs 10611 |
This theorem is referenced by: bdbl 12431 |
Copyright terms: Public domain | W3C validator |