Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn GIF version

Theorem qdencn 14431
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11195 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
Assertion
Ref Expression
qdencn ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑄
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑄(𝑧)

Proof of Theorem qdencn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
21recld 10931 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
3 simpr 110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
43rphalfcld 9696 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 2) ∈ ℝ+)
5 qdenre 11195 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
62, 4, 5syl2anc 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
7 simpll 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
87imcld 10932 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
94adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (𝐵 / 2) ∈ ℝ+)
10 qdenre 11195 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
118, 9, 10syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
12 qcn 9623 . . . . . . . 8 (𝑢 ∈ ℚ → 𝑢 ∈ ℂ)
1312ad2antrl 490 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
1413adantr 276 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
15 ax-icn 7897 . . . . . . . 8 i ∈ ℂ
1615a1i 9 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → i ∈ ℂ)
17 qcn 9623 . . . . . . . 8 (𝑣 ∈ ℚ → 𝑣 ∈ ℂ)
1817ad2antrl 490 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℂ)
1916, 18mulcld 7968 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · 𝑣) ∈ ℂ)
2014, 19addcld 7967 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ ℂ)
21 qre 9614 . . . . . . . . . 10 (𝑢 ∈ ℚ → 𝑢 ∈ ℝ)
2221ad2antrl 490 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
2322adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
24 qre 9614 . . . . . . . . 9 (𝑣 ∈ ℚ → 𝑣 ∈ ℝ)
2524ad2antrl 490 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℝ)
2623, 25crred 10969 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) = 𝑢)
27 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℚ)
2826, 27eqeltrd 2254 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
2923, 25crimd 10970 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) = 𝑣)
30 simprl 529 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℚ)
3129, 30eqeltrd 2254 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
3228, 31jca 306 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
33 fveq2 5511 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℜ‘𝑧) = (ℜ‘(𝑢 + (i · 𝑣))))
3433eleq1d 2246 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℜ‘𝑧) ∈ ℚ ↔ (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
35 fveq2 5511 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℑ‘𝑧) = (ℑ‘(𝑢 + (i · 𝑣))))
3635eleq1d 2246 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℑ‘𝑧) ∈ ℚ ↔ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
3734, 36anbi12d 473 . . . . . 6 (𝑧 = (𝑢 + (i · 𝑣)) → (((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ) ↔ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
38 qdencn.q . . . . . 6 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
3937, 38elrab2 2896 . . . . 5 ((𝑢 + (i · 𝑣)) ∈ 𝑄 ↔ ((𝑢 + (i · 𝑣)) ∈ ℂ ∧ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
4020, 32, 39sylanbrc 417 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ 𝑄)
417adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
4220, 41subcld 8258 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) ∈ ℂ)
4342abscld 11174 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ∈ ℝ)
442ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℝ)
4544recnd 7976 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℂ)
4614, 45subcld 8258 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 − (ℜ‘𝐴)) ∈ ℂ)
4746abscld 11174 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) ∈ ℝ)
488adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 7976 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℂ)
5018, 49subcld 8258 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑣 − (ℑ‘𝐴)) ∈ ℂ)
5150abscld 11174 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℝ)
5247, 51readdcld 7977 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) ∈ ℝ)
533ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ+)
5453rpred 9683 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ)
551replimd 10934 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5655oveq2d 5885 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5756ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5816, 49mulcld 7968 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
5914, 19, 45, 58addsub4d 8305 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6057, 59eqtrd 2210 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6160fveq2d 5515 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) = (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))))
6219, 58subcld 8258 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((i · 𝑣) − (i · (ℑ‘𝐴))) ∈ ℂ)
6346, 62abstrid 11189 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6461, 63eqbrtrd 4022 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6516, 50absmuld 11187 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))))
6616, 18, 49subdid 8361 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (𝑣 − (ℑ‘𝐴))) = ((i · 𝑣) − (i · (ℑ‘𝐴))))
6766fveq2d 5515 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))))
68 absi 11052 . . . . . . . . . 10 (abs‘i) = 1
6968oveq1i 5879 . . . . . . . . 9 ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (1 · (abs‘(𝑣 − (ℑ‘𝐴))))
7051recnd 7976 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℂ)
7170mulid2d 7966 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (1 · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7269, 71eqtrid 2222 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7365, 67, 723eqtr3d 2218 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7473oveq2d 5885 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))) = ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
7564, 74breqtrd 4026 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
76 simplrr 536 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
77 simprr 531 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
7847, 51, 54, 76, 77lt2halvesd 9155 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) < 𝐵)
7943, 52, 54, 75, 78lelttrd 8072 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵)
80 oveq1 5876 . . . . . . 7 (𝑥 = (𝑢 + (i · 𝑣)) → (𝑥𝐴) = ((𝑢 + (i · 𝑣)) − 𝐴))
8180fveq2d 5515 . . . . . 6 (𝑥 = (𝑢 + (i · 𝑣)) → (abs‘(𝑥𝐴)) = (abs‘((𝑢 + (i · 𝑣)) − 𝐴)))
8281breq1d 4010 . . . . 5 (𝑥 = (𝑢 + (i · 𝑣)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵))
8382rspcev 2841 . . . 4 (((𝑢 + (i · 𝑣)) ∈ 𝑄 ∧ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8440, 79, 83syl2anc 411 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8511, 84rexlimddv 2599 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
866, 85rexlimddv 2599 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456  {crab 2459   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803  ici 7804   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  2c2 8959  cq 9608  +crp 9640  cre 10833  cim 10834  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator