Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn GIF version

Theorem qdencn 15758
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11384 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
Assertion
Ref Expression
qdencn ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑄
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑄(𝑧)

Proof of Theorem qdencn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
21recld 11120 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
3 simpr 110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
43rphalfcld 9801 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 2) ∈ ℝ+)
5 qdenre 11384 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
62, 4, 5syl2anc 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
7 simpll 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
87imcld 11121 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
94adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (𝐵 / 2) ∈ ℝ+)
10 qdenre 11384 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
118, 9, 10syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
12 qcn 9725 . . . . . . . 8 (𝑢 ∈ ℚ → 𝑢 ∈ ℂ)
1312ad2antrl 490 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
1413adantr 276 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
15 ax-icn 7991 . . . . . . . 8 i ∈ ℂ
1615a1i 9 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → i ∈ ℂ)
17 qcn 9725 . . . . . . . 8 (𝑣 ∈ ℚ → 𝑣 ∈ ℂ)
1817ad2antrl 490 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℂ)
1916, 18mulcld 8064 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · 𝑣) ∈ ℂ)
2014, 19addcld 8063 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ ℂ)
21 qre 9716 . . . . . . . . . 10 (𝑢 ∈ ℚ → 𝑢 ∈ ℝ)
2221ad2antrl 490 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
2322adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
24 qre 9716 . . . . . . . . 9 (𝑣 ∈ ℚ → 𝑣 ∈ ℝ)
2524ad2antrl 490 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℝ)
2623, 25crred 11158 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) = 𝑢)
27 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℚ)
2826, 27eqeltrd 2273 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
2923, 25crimd 11159 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) = 𝑣)
30 simprl 529 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℚ)
3129, 30eqeltrd 2273 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
3228, 31jca 306 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
33 fveq2 5561 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℜ‘𝑧) = (ℜ‘(𝑢 + (i · 𝑣))))
3433eleq1d 2265 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℜ‘𝑧) ∈ ℚ ↔ (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
35 fveq2 5561 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℑ‘𝑧) = (ℑ‘(𝑢 + (i · 𝑣))))
3635eleq1d 2265 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℑ‘𝑧) ∈ ℚ ↔ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
3734, 36anbi12d 473 . . . . . 6 (𝑧 = (𝑢 + (i · 𝑣)) → (((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ) ↔ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
38 qdencn.q . . . . . 6 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
3937, 38elrab2 2923 . . . . 5 ((𝑢 + (i · 𝑣)) ∈ 𝑄 ↔ ((𝑢 + (i · 𝑣)) ∈ ℂ ∧ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
4020, 32, 39sylanbrc 417 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ 𝑄)
417adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
4220, 41subcld 8354 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) ∈ ℂ)
4342abscld 11363 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ∈ ℝ)
442ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℝ)
4544recnd 8072 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℂ)
4614, 45subcld 8354 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 − (ℜ‘𝐴)) ∈ ℂ)
4746abscld 11363 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) ∈ ℝ)
488adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 8072 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℂ)
5018, 49subcld 8354 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑣 − (ℑ‘𝐴)) ∈ ℂ)
5150abscld 11363 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℝ)
5247, 51readdcld 8073 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) ∈ ℝ)
533ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ+)
5453rpred 9788 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ)
551replimd 11123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5655oveq2d 5941 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5756ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5816, 49mulcld 8064 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
5914, 19, 45, 58addsub4d 8401 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6057, 59eqtrd 2229 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6160fveq2d 5565 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) = (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))))
6219, 58subcld 8354 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((i · 𝑣) − (i · (ℑ‘𝐴))) ∈ ℂ)
6346, 62abstrid 11378 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6461, 63eqbrtrd 4056 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6516, 50absmuld 11376 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))))
6616, 18, 49subdid 8457 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (𝑣 − (ℑ‘𝐴))) = ((i · 𝑣) − (i · (ℑ‘𝐴))))
6766fveq2d 5565 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))))
68 absi 11241 . . . . . . . . . 10 (abs‘i) = 1
6968oveq1i 5935 . . . . . . . . 9 ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (1 · (abs‘(𝑣 − (ℑ‘𝐴))))
7051recnd 8072 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℂ)
7170mulid2d 8062 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (1 · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7269, 71eqtrid 2241 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7365, 67, 723eqtr3d 2237 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7473oveq2d 5941 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))) = ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
7564, 74breqtrd 4060 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
76 simplrr 536 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
77 simprr 531 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
7847, 51, 54, 76, 77lt2halvesd 9256 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) < 𝐵)
7943, 52, 54, 75, 78lelttrd 8168 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵)
80 oveq1 5932 . . . . . . 7 (𝑥 = (𝑢 + (i · 𝑣)) → (𝑥𝐴) = ((𝑢 + (i · 𝑣)) − 𝐴))
8180fveq2d 5565 . . . . . 6 (𝑥 = (𝑢 + (i · 𝑣)) → (abs‘(𝑥𝐴)) = (abs‘((𝑢 + (i · 𝑣)) − 𝐴)))
8281breq1d 4044 . . . . 5 (𝑥 = (𝑢 + (i · 𝑣)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵))
8382rspcev 2868 . . . 4 (((𝑢 + (i · 𝑣)) ∈ 𝑄 ∧ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8440, 79, 83syl2anc 411 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8511, 84rexlimddv 2619 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
866, 85rexlimddv 2619 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  {crab 2479   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  1c1 7897  ici 7898   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  2c2 9058  cq 9710  +crp 9745  cre 11022  cim 11023  abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator