Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn GIF version

Theorem qdencn 11561
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 10600 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
Assertion
Ref Expression
qdencn ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑄
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑄(𝑧)

Proof of Theorem qdencn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
21recld 10337 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
3 simpr 108 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
43rphalfcld 9155 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 2) ∈ ℝ+)
5 qdenre 10600 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
62, 4, 5syl2anc 403 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
7 simpll 496 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
87imcld 10338 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
94adantr 270 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (𝐵 / 2) ∈ ℝ+)
10 qdenre 10600 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
118, 9, 10syl2anc 403 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
12 qcn 9088 . . . . . . . 8 (𝑢 ∈ ℚ → 𝑢 ∈ ℂ)
1312ad2antrl 474 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
1413adantr 270 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
15 ax-icn 7419 . . . . . . . 8 i ∈ ℂ
1615a1i 9 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → i ∈ ℂ)
17 qcn 9088 . . . . . . . 8 (𝑣 ∈ ℚ → 𝑣 ∈ ℂ)
1817ad2antrl 474 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℂ)
1916, 18mulcld 7487 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · 𝑣) ∈ ℂ)
2014, 19addcld 7486 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ ℂ)
21 qre 9079 . . . . . . . . . 10 (𝑢 ∈ ℚ → 𝑢 ∈ ℝ)
2221ad2antrl 474 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
2322adantr 270 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
24 qre 9079 . . . . . . . . 9 (𝑣 ∈ ℚ → 𝑣 ∈ ℝ)
2524ad2antrl 474 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℝ)
2623, 25crred 10375 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) = 𝑢)
27 simplrl 502 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℚ)
2826, 27eqeltrd 2164 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
2923, 25crimd 10376 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) = 𝑣)
30 simprl 498 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℚ)
3129, 30eqeltrd 2164 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
3228, 31jca 300 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
33 fveq2 5289 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℜ‘𝑧) = (ℜ‘(𝑢 + (i · 𝑣))))
3433eleq1d 2156 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℜ‘𝑧) ∈ ℚ ↔ (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
35 fveq2 5289 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℑ‘𝑧) = (ℑ‘(𝑢 + (i · 𝑣))))
3635eleq1d 2156 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℑ‘𝑧) ∈ ℚ ↔ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
3734, 36anbi12d 457 . . . . . 6 (𝑧 = (𝑢 + (i · 𝑣)) → (((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ) ↔ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
38 qdencn.q . . . . . 6 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
3937, 38elrab2 2772 . . . . 5 ((𝑢 + (i · 𝑣)) ∈ 𝑄 ↔ ((𝑢 + (i · 𝑣)) ∈ ℂ ∧ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
4020, 32, 39sylanbrc 408 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ 𝑄)
417adantr 270 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
4220, 41subcld 7772 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) ∈ ℂ)
4342abscld 10579 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ∈ ℝ)
442ad2antrr 472 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℝ)
4544recnd 7495 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℂ)
4614, 45subcld 7772 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 − (ℜ‘𝐴)) ∈ ℂ)
4746abscld 10579 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) ∈ ℝ)
488adantr 270 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 7495 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℂ)
5018, 49subcld 7772 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑣 − (ℑ‘𝐴)) ∈ ℂ)
5150abscld 10579 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℝ)
5247, 51readdcld 7496 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) ∈ ℝ)
533ad2antrr 472 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ+)
5453rpred 9142 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ)
551replimd 10340 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5655oveq2d 5650 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5756ad2antrr 472 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5816, 49mulcld 7487 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
5914, 19, 45, 58addsub4d 7819 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6057, 59eqtrd 2120 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6160fveq2d 5293 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) = (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))))
6219, 58subcld 7772 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((i · 𝑣) − (i · (ℑ‘𝐴))) ∈ ℂ)
6346, 62abstrid 10594 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6461, 63eqbrtrd 3857 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6516, 50absmuld 10592 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))))
6616, 18, 49subdid 7871 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (𝑣 − (ℑ‘𝐴))) = ((i · 𝑣) − (i · (ℑ‘𝐴))))
6766fveq2d 5293 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))))
68 absi 10457 . . . . . . . . . 10 (abs‘i) = 1
6968oveq1i 5644 . . . . . . . . 9 ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (1 · (abs‘(𝑣 − (ℑ‘𝐴))))
7051recnd 7495 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℂ)
7170mulid2d 7485 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (1 · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7269, 71syl5eq 2132 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7365, 67, 723eqtr3d 2128 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7473oveq2d 5650 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))) = ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
7564, 74breqtrd 3861 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
76 simplrr 503 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
77 simprr 499 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
7847, 51, 54, 76, 77lt2halvesd 8633 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) < 𝐵)
7943, 52, 54, 75, 78lelttrd 7587 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵)
80 oveq1 5641 . . . . . . 7 (𝑥 = (𝑢 + (i · 𝑣)) → (𝑥𝐴) = ((𝑢 + (i · 𝑣)) − 𝐴))
8180fveq2d 5293 . . . . . 6 (𝑥 = (𝑢 + (i · 𝑣)) → (abs‘(𝑥𝐴)) = (abs‘((𝑢 + (i · 𝑣)) − 𝐴)))
8281breq1d 3847 . . . . 5 (𝑥 = (𝑢 + (i · 𝑣)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵))
8382rspcev 2722 . . . 4 (((𝑢 + (i · 𝑣)) ∈ 𝑄 ∧ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8440, 79, 83syl2anc 403 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8511, 84rexlimddv 2493 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
866, 85rexlimddv 2493 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wrex 2360  {crab 2363   class class class wbr 3837  cfv 5002  (class class class)co 5634  cc 7327  cr 7328  1c1 7330  ici 7331   + caddc 7332   · cmul 7334   < clt 7501  cle 7502  cmin 7632   / cdiv 8113  2c2 8444  cq 9073  +crp 9103  cre 10239  cim 10240  abscabs 10395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator