Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn GIF version

Theorem qdencn 14336
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11179 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
Assertion
Ref Expression
qdencn ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑄
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑄(𝑧)

Proof of Theorem qdencn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
21recld 10915 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
3 simpr 110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
43rphalfcld 9680 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 2) ∈ ℝ+)
5 qdenre 11179 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
62, 4, 5syl2anc 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
7 simpll 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
87imcld 10916 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
94adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (𝐵 / 2) ∈ ℝ+)
10 qdenre 11179 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
118, 9, 10syl2anc 411 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
12 qcn 9607 . . . . . . . 8 (𝑢 ∈ ℚ → 𝑢 ∈ ℂ)
1312ad2antrl 490 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
1413adantr 276 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
15 ax-icn 7881 . . . . . . . 8 i ∈ ℂ
1615a1i 9 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → i ∈ ℂ)
17 qcn 9607 . . . . . . . 8 (𝑣 ∈ ℚ → 𝑣 ∈ ℂ)
1817ad2antrl 490 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℂ)
1916, 18mulcld 7952 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · 𝑣) ∈ ℂ)
2014, 19addcld 7951 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ ℂ)
21 qre 9598 . . . . . . . . . 10 (𝑢 ∈ ℚ → 𝑢 ∈ ℝ)
2221ad2antrl 490 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
2322adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
24 qre 9598 . . . . . . . . 9 (𝑣 ∈ ℚ → 𝑣 ∈ ℝ)
2524ad2antrl 490 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℝ)
2623, 25crred 10953 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) = 𝑢)
27 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℚ)
2826, 27eqeltrd 2252 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
2923, 25crimd 10954 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) = 𝑣)
30 simprl 529 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℚ)
3129, 30eqeltrd 2252 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
3228, 31jca 306 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
33 fveq2 5507 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℜ‘𝑧) = (ℜ‘(𝑢 + (i · 𝑣))))
3433eleq1d 2244 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℜ‘𝑧) ∈ ℚ ↔ (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
35 fveq2 5507 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℑ‘𝑧) = (ℑ‘(𝑢 + (i · 𝑣))))
3635eleq1d 2244 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℑ‘𝑧) ∈ ℚ ↔ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
3734, 36anbi12d 473 . . . . . 6 (𝑧 = (𝑢 + (i · 𝑣)) → (((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ) ↔ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
38 qdencn.q . . . . . 6 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
3937, 38elrab2 2894 . . . . 5 ((𝑢 + (i · 𝑣)) ∈ 𝑄 ↔ ((𝑢 + (i · 𝑣)) ∈ ℂ ∧ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
4020, 32, 39sylanbrc 417 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ 𝑄)
417adantr 276 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
4220, 41subcld 8242 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) ∈ ℂ)
4342abscld 11158 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ∈ ℝ)
442ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℝ)
4544recnd 7960 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℂ)
4614, 45subcld 8242 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 − (ℜ‘𝐴)) ∈ ℂ)
4746abscld 11158 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) ∈ ℝ)
488adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 7960 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℂ)
5018, 49subcld 8242 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑣 − (ℑ‘𝐴)) ∈ ℂ)
5150abscld 11158 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℝ)
5247, 51readdcld 7961 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) ∈ ℝ)
533ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ+)
5453rpred 9667 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ)
551replimd 10918 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5655oveq2d 5881 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5756ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5816, 49mulcld 7952 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
5914, 19, 45, 58addsub4d 8289 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6057, 59eqtrd 2208 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6160fveq2d 5511 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) = (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))))
6219, 58subcld 8242 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((i · 𝑣) − (i · (ℑ‘𝐴))) ∈ ℂ)
6346, 62abstrid 11173 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6461, 63eqbrtrd 4020 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6516, 50absmuld 11171 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))))
6616, 18, 49subdid 8345 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (𝑣 − (ℑ‘𝐴))) = ((i · 𝑣) − (i · (ℑ‘𝐴))))
6766fveq2d 5511 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))))
68 absi 11036 . . . . . . . . . 10 (abs‘i) = 1
6968oveq1i 5875 . . . . . . . . 9 ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (1 · (abs‘(𝑣 − (ℑ‘𝐴))))
7051recnd 7960 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℂ)
7170mulid2d 7950 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (1 · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7269, 71eqtrid 2220 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7365, 67, 723eqtr3d 2216 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7473oveq2d 5881 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))) = ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
7564, 74breqtrd 4024 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
76 simplrr 536 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
77 simprr 531 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
7847, 51, 54, 76, 77lt2halvesd 9139 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) < 𝐵)
7943, 52, 54, 75, 78lelttrd 8056 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵)
80 oveq1 5872 . . . . . . 7 (𝑥 = (𝑢 + (i · 𝑣)) → (𝑥𝐴) = ((𝑢 + (i · 𝑣)) − 𝐴))
8180fveq2d 5511 . . . . . 6 (𝑥 = (𝑢 + (i · 𝑣)) → (abs‘(𝑥𝐴)) = (abs‘((𝑢 + (i · 𝑣)) − 𝐴)))
8281breq1d 4008 . . . . 5 (𝑥 = (𝑢 + (i · 𝑣)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵))
8382rspcev 2839 . . . 4 (((𝑢 + (i · 𝑣)) ∈ 𝑄 ∧ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8440, 79, 83syl2anc 411 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8511, 84rexlimddv 2597 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
866, 85rexlimddv 2597 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wrex 2454  {crab 2457   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  cr 7785  1c1 7787  ici 7788   + caddc 7789   · cmul 7791   < clt 7966  cle 7967  cmin 8102   / cdiv 8602  2c2 8943  cq 9592  +crp 9624  cre 10817  cim 10818  abscabs 10974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator