ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumadd GIF version

Theorem isumadd 11908
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1 𝑍 = (ℤ𝑀)
isumadd.2 (𝜑𝑀 ∈ ℤ)
isumadd.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumadd.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumadd.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumadd.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
isumadd.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumadd.8 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumadd (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumadd
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2 𝑍 = (ℤ𝑀)
2 isumadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 simpr 110 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
4 isumadd.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 isumadd.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2286 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 isumadd.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
8 isumadd.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
97, 8eqeltrd 2286 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
106, 9addcld 8134 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ)
11 fveq2 5603 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
12 fveq2 5603 . . . . . 6 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
1311, 12oveq12d 5992 . . . . 5 (𝑚 = 𝑘 → ((𝐹𝑚) + (𝐺𝑚)) = ((𝐹𝑘) + (𝐺𝑘)))
14 eqid 2209 . . . . 5 (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))
1513, 14fvmptg 5683 . . . 4 ((𝑘𝑍 ∧ ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
163, 10, 15syl2anc 411 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
174, 7oveq12d 5992 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) = (𝐴 + 𝐵))
1816, 17eqtrd 2242 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = (𝐴 + 𝐵))
195, 8addcld 8134 . 2 ((𝜑𝑘𝑍) → (𝐴 + 𝐵) ∈ ℂ)
20 isumadd.7 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
211, 2, 4, 5, 20isumclim2 11899 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
22 seqex 10638 . . . 4 seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V
2322a1i 9 . . 3 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V)
24 isumadd.8 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
251, 2, 7, 8, 24isumclim2 11899 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘𝑍 𝐵)
261, 2, 6serf 10672 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
2726ffvelcdmda 5743 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
281, 2, 9serf 10672 . . . 4 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
2928ffvelcdmda 5743 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
30 simpr 110 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
3130, 1eleqtrdi 2302 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
32 simpll 527 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝜑)
331eleq2i 2276 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3433biimpri 133 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
3534adantl 277 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘𝑍)
3632, 35, 6syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3732, 35, 9syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3832, 35, 10syl2anc 411 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ)
3935, 38, 15syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4031, 36, 37, 39ser3add 10711 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗)))
411, 2, 21, 23, 25, 27, 29, 40climadd 11803 . 2 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ⇝ (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
421, 2, 18, 19, 41isumclim 11898 1 (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  cmpt 4124  dom cdm 4696  cfv 5294  (class class class)co 5974  cc 7965   + caddc 7970  cz 9414  cuz 9690  seqcseq 10636  cli 11755  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  sumsplitdc  11909
  Copyright terms: Public domain W3C validator