![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumadd | GIF version |
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumadd.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumadd.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) |
isumadd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
isumadd.7 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
isumadd.8 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumadd | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
4 | isumadd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
5 | isumadd.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
6 | 4, 5 | eqeltrd 2270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
7 | isumadd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) | |
8 | isumadd.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
9 | 7, 8 | eqeltrd 2270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
10 | 6, 9 | addcld 8041 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
11 | fveq2 5555 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
12 | fveq2 5555 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | |
13 | 11, 12 | oveq12d 5937 | . . . . 5 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) + (𝐺‘𝑚)) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
14 | eqid 2193 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) | |
15 | 13, 14 | fvmptg 5634 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
16 | 3, 10, 15 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
17 | 4, 7 | oveq12d 5937 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) = (𝐴 + 𝐵)) |
18 | 16, 17 | eqtrd 2226 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = (𝐴 + 𝐵)) |
19 | 5, 8 | addcld 8041 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 + 𝐵) ∈ ℂ) |
20 | isumadd.7 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
21 | 1, 2, 4, 5, 20 | isumclim2 11568 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
22 | seqex 10523 | . . . 4 ⊢ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V | |
23 | 22 | a1i 9 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V) |
24 | isumadd.8 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | |
25 | 1, 2, 7, 8, 24 | isumclim2 11568 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ 𝑍 𝐵) |
26 | 1, 2, 6 | serf 10557 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
27 | 26 | ffvelcdmda 5694 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
28 | 1, 2, 9 | serf 10557 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
29 | 28 | ffvelcdmda 5694 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
31 | 30, 1 | eleqtrdi 2286 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
32 | simpll 527 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝜑) | |
33 | 1 | eleq2i 2260 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
34 | 33 | biimpri 133 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
35 | 34 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ 𝑍) |
36 | 32, 35, 6 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
37 | 32, 35, 9 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
38 | 32, 35, 10 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
39 | 35, 38, 15 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
40 | 31, 36, 37, 39 | ser3add 10596 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗))) |
41 | 1, 2, 21, 23, 25, 27, 29, 40 | climadd 11472 | . 2 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ⇝ (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
42 | 1, 2, 18, 19, 41 | isumclim 11567 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4091 dom cdm 4660 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 + caddc 7877 ℤcz 9320 ℤ≥cuz 9595 seqcseq 10521 ⇝ cli 11424 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: sumsplitdc 11578 |
Copyright terms: Public domain | W3C validator |