| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isumadd | GIF version | ||
| Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| isumadd.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isumadd.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) |
| isumadd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| isumadd.7 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| isumadd.8 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isumadd | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | isumadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 4 | isumadd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 5 | isumadd.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 6 | 4, 5 | eqeltrd 2286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 7 | isumadd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) | |
| 8 | isumadd.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
| 9 | 7, 8 | eqeltrd 2286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 10 | 6, 9 | addcld 8134 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
| 11 | fveq2 5603 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
| 12 | fveq2 5603 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | |
| 13 | 11, 12 | oveq12d 5992 | . . . . 5 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) + (𝐺‘𝑚)) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 14 | eqid 2209 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) | |
| 15 | 13, 14 | fvmptg 5683 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 16 | 3, 10, 15 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 17 | 4, 7 | oveq12d 5992 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) = (𝐴 + 𝐵)) |
| 18 | 16, 17 | eqtrd 2242 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = (𝐴 + 𝐵)) |
| 19 | 5, 8 | addcld 8134 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 + 𝐵) ∈ ℂ) |
| 20 | isumadd.7 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 21 | 1, 2, 4, 5, 20 | isumclim2 11899 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| 22 | seqex 10638 | . . . 4 ⊢ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V | |
| 23 | 22 | a1i 9 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V) |
| 24 | isumadd.8 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | |
| 25 | 1, 2, 7, 8, 24 | isumclim2 11899 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ 𝑍 𝐵) |
| 26 | 1, 2, 6 | serf 10672 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 27 | 26 | ffvelcdmda 5743 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
| 28 | 1, 2, 9 | serf 10672 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
| 29 | 28 | ffvelcdmda 5743 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
| 30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 31 | 30, 1 | eleqtrdi 2302 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 32 | simpll 527 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝜑) | |
| 33 | 1 | eleq2i 2276 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 34 | 33 | biimpri 133 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
| 35 | 34 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ 𝑍) |
| 36 | 32, 35, 6 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 37 | 32, 35, 9 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 38 | 32, 35, 10 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
| 39 | 35, 38, 15 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 40 | 31, 36, 37, 39 | ser3add 10711 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗))) |
| 41 | 1, 2, 21, 23, 25, 27, 29, 40 | climadd 11803 | . 2 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ⇝ (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| 42 | 1, 2, 18, 19, 41 | isumclim 11898 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 dom cdm 4696 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 + caddc 7970 ℤcz 9414 ℤ≥cuz 9690 seqcseq 10636 ⇝ cli 11755 Σcsu 11830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 |
| This theorem is referenced by: sumsplitdc 11909 |
| Copyright terms: Public domain | W3C validator |