![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumadd | GIF version |
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumadd.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumadd.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) |
isumadd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
isumadd.7 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
isumadd.8 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumadd | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
4 | isumadd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
5 | isumadd.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
6 | 4, 5 | eqeltrd 2264 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
7 | isumadd.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) | |
8 | isumadd.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
9 | 7, 8 | eqeltrd 2264 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
10 | 6, 9 | addcld 7991 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
11 | fveq2 5527 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
12 | fveq2 5527 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | |
13 | 11, 12 | oveq12d 5906 | . . . . 5 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) + (𝐺‘𝑚)) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
14 | eqid 2187 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) | |
15 | 13, 14 | fvmptg 5605 | . . . 4 ⊢ ((𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
16 | 3, 10, 15 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
17 | 4, 7 | oveq12d 5906 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) = (𝐴 + 𝐵)) |
18 | 16, 17 | eqtrd 2220 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = (𝐴 + 𝐵)) |
19 | 5, 8 | addcld 7991 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 + 𝐵) ∈ ℂ) |
20 | isumadd.7 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
21 | 1, 2, 4, 5, 20 | isumclim2 11444 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
22 | seqex 10461 | . . . 4 ⊢ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V | |
23 | 22 | a1i 9 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V) |
24 | isumadd.8 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | |
25 | 1, 2, 7, 8, 24 | isumclim2 11444 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ 𝑍 𝐵) |
26 | 1, 2, 6 | serf 10488 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
27 | 26 | ffvelcdmda 5664 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
28 | 1, 2, 9 | serf 10488 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
29 | 28 | ffvelcdmda 5664 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
31 | 30, 1 | eleqtrdi 2280 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
32 | simpll 527 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝜑) | |
33 | 1 | eleq2i 2254 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
34 | 33 | biimpri 133 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
35 | 34 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ 𝑍) |
36 | 32, 35, 6 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
37 | 32, 35, 9 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
38 | 32, 35, 10 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ ℂ) |
39 | 35, 38, 15 | syl2anc 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
40 | 31, 36, 37, 39 | ser3add 10519 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗))) |
41 | 1, 2, 21, 23, 25, 27, 29, 40 | climadd 11348 | . 2 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ⇝ (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
42 | 1, 2, 18, 19, 41 | isumclim 11443 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ↦ cmpt 4076 dom cdm 4638 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 + caddc 7828 ℤcz 9267 ℤ≥cuz 9542 seqcseq 10459 ⇝ cli 11300 Σcsu 11375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-ihash 10770 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 |
This theorem is referenced by: sumsplitdc 11454 |
Copyright terms: Public domain | W3C validator |