Step | Hyp | Ref
| Expression |
1 | | isumadd.1 |
. 2
β’ π =
(β€β₯βπ) |
2 | | isumadd.2 |
. 2
β’ (π β π β β€) |
3 | | simpr 110 |
. . . 4
β’ ((π β§ π β π) β π β π) |
4 | | isumadd.3 |
. . . . . 6
β’ ((π β§ π β π) β (πΉβπ) = π΄) |
5 | | isumadd.4 |
. . . . . 6
β’ ((π β§ π β π) β π΄ β β) |
6 | 4, 5 | eqeltrd 2254 |
. . . . 5
β’ ((π β§ π β π) β (πΉβπ) β β) |
7 | | isumadd.5 |
. . . . . 6
β’ ((π β§ π β π) β (πΊβπ) = π΅) |
8 | | isumadd.6 |
. . . . . 6
β’ ((π β§ π β π) β π΅ β β) |
9 | 7, 8 | eqeltrd 2254 |
. . . . 5
β’ ((π β§ π β π) β (πΊβπ) β β) |
10 | 6, 9 | addcld 7979 |
. . . 4
β’ ((π β§ π β π) β ((πΉβπ) + (πΊβπ)) β β) |
11 | | fveq2 5517 |
. . . . . 6
β’ (π = π β (πΉβπ) = (πΉβπ)) |
12 | | fveq2 5517 |
. . . . . 6
β’ (π = π β (πΊβπ) = (πΊβπ)) |
13 | 11, 12 | oveq12d 5895 |
. . . . 5
β’ (π = π β ((πΉβπ) + (πΊβπ)) = ((πΉβπ) + (πΊβπ))) |
14 | | eqid 2177 |
. . . . 5
β’ (π β π β¦ ((πΉβπ) + (πΊβπ))) = (π β π β¦ ((πΉβπ) + (πΊβπ))) |
15 | 13, 14 | fvmptg 5594 |
. . . 4
β’ ((π β π β§ ((πΉβπ) + (πΊβπ)) β β) β ((π β π β¦ ((πΉβπ) + (πΊβπ)))βπ) = ((πΉβπ) + (πΊβπ))) |
16 | 3, 10, 15 | syl2anc 411 |
. . 3
β’ ((π β§ π β π) β ((π β π β¦ ((πΉβπ) + (πΊβπ)))βπ) = ((πΉβπ) + (πΊβπ))) |
17 | 4, 7 | oveq12d 5895 |
. . 3
β’ ((π β§ π β π) β ((πΉβπ) + (πΊβπ)) = (π΄ + π΅)) |
18 | 16, 17 | eqtrd 2210 |
. 2
β’ ((π β§ π β π) β ((π β π β¦ ((πΉβπ) + (πΊβπ)))βπ) = (π΄ + π΅)) |
19 | 5, 8 | addcld 7979 |
. 2
β’ ((π β§ π β π) β (π΄ + π΅) β β) |
20 | | isumadd.7 |
. . . 4
β’ (π β seqπ( + , πΉ) β dom β ) |
21 | 1, 2, 4, 5, 20 | isumclim2 11432 |
. . 3
β’ (π β seqπ( + , πΉ) β Ξ£π β π π΄) |
22 | | seqex 10449 |
. . . 4
β’ seqπ( + , (π β π β¦ ((πΉβπ) + (πΊβπ)))) β V |
23 | 22 | a1i 9 |
. . 3
β’ (π β seqπ( + , (π β π β¦ ((πΉβπ) + (πΊβπ)))) β V) |
24 | | isumadd.8 |
. . . 4
β’ (π β seqπ( + , πΊ) β dom β ) |
25 | 1, 2, 7, 8, 24 | isumclim2 11432 |
. . 3
β’ (π β seqπ( + , πΊ) β Ξ£π β π π΅) |
26 | 1, 2, 6 | serf 10476 |
. . . 4
β’ (π β seqπ( + , πΉ):πβΆβ) |
27 | 26 | ffvelcdmda 5653 |
. . 3
β’ ((π β§ π β π) β (seqπ( + , πΉ)βπ) β β) |
28 | 1, 2, 9 | serf 10476 |
. . . 4
β’ (π β seqπ( + , πΊ):πβΆβ) |
29 | 28 | ffvelcdmda 5653 |
. . 3
β’ ((π β§ π β π) β (seqπ( + , πΊ)βπ) β β) |
30 | | simpr 110 |
. . . . 5
β’ ((π β§ π β π) β π β π) |
31 | 30, 1 | eleqtrdi 2270 |
. . . 4
β’ ((π β§ π β π) β π β (β€β₯βπ)) |
32 | | simpll 527 |
. . . . 5
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π) |
33 | 1 | eleq2i 2244 |
. . . . . . 7
β’ (π β π β π β (β€β₯βπ)) |
34 | 33 | biimpri 133 |
. . . . . 6
β’ (π β
(β€β₯βπ) β π β π) |
35 | 34 | adantl 277 |
. . . . 5
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
36 | 32, 35, 6 | syl2anc 411 |
. . . 4
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
37 | 32, 35, 9 | syl2anc 411 |
. . . 4
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΊβπ) β β) |
38 | 32, 35, 10 | syl2anc 411 |
. . . . 5
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ((πΉβπ) + (πΊβπ)) β β) |
39 | 35, 38, 15 | syl2anc 411 |
. . . 4
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ((π β π β¦ ((πΉβπ) + (πΊβπ)))βπ) = ((πΉβπ) + (πΊβπ))) |
40 | 31, 36, 37, 39 | ser3add 10507 |
. . 3
β’ ((π β§ π β π) β (seqπ( + , (π β π β¦ ((πΉβπ) + (πΊβπ))))βπ) = ((seqπ( + , πΉ)βπ) + (seqπ( + , πΊ)βπ))) |
41 | 1, 2, 21, 23, 25, 27, 29, 40 | climadd 11336 |
. 2
β’ (π β seqπ( + , (π β π β¦ ((πΉβπ) + (πΊβπ)))) β (Ξ£π β π π΄ + Ξ£π β π π΅)) |
42 | 1, 2, 18, 19, 41 | isumclim 11431 |
1
β’ (π β Ξ£π β π (π΄ + π΅) = (Ξ£π β π π΄ + Ξ£π β π π΅)) |