ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumadd GIF version

Theorem isumadd 11423
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1 𝑍 = (ℤ𝑀)
isumadd.2 (𝜑𝑀 ∈ ℤ)
isumadd.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumadd.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumadd.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumadd.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
isumadd.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumadd.8 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumadd (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumadd
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2 𝑍 = (ℤ𝑀)
2 isumadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 simpr 110 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
4 isumadd.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
5 isumadd.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
64, 5eqeltrd 2254 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 isumadd.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
8 isumadd.6 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
97, 8eqeltrd 2254 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
106, 9addcld 7967 . . . 4 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ)
11 fveq2 5511 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
12 fveq2 5511 . . . . . 6 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
1311, 12oveq12d 5887 . . . . 5 (𝑚 = 𝑘 → ((𝐹𝑚) + (𝐺𝑚)) = ((𝐹𝑘) + (𝐺𝑘)))
14 eqid 2177 . . . . 5 (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))
1513, 14fvmptg 5588 . . . 4 ((𝑘𝑍 ∧ ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
163, 10, 15syl2anc 411 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
174, 7oveq12d 5887 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) = (𝐴 + 𝐵))
1816, 17eqtrd 2210 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = (𝐴 + 𝐵))
195, 8addcld 7967 . 2 ((𝜑𝑘𝑍) → (𝐴 + 𝐵) ∈ ℂ)
20 isumadd.7 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
211, 2, 4, 5, 20isumclim2 11414 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
22 seqex 10433 . . . 4 seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V
2322a1i 9 . . 3 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V)
24 isumadd.8 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
251, 2, 7, 8, 24isumclim2 11414 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘𝑍 𝐵)
261, 2, 6serf 10460 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
2726ffvelcdmda 5647 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
281, 2, 9serf 10460 . . . 4 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
2928ffvelcdmda 5647 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
30 simpr 110 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
3130, 1eleqtrdi 2270 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
32 simpll 527 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝜑)
331eleq2i 2244 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3433biimpri 133 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
3534adantl 277 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘𝑍)
3632, 35, 6syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3732, 35, 9syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3832, 35, 10syl2anc 411 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) + (𝐺𝑘)) ∈ ℂ)
3935, 38, 15syl2anc 411 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
4031, 36, 37, 39ser3add 10491 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗)))
411, 2, 21, 23, 25, 27, 29, 40climadd 11318 . 2 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ⇝ (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
421, 2, 18, 19, 41isumclim 11413 1 (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2737  cmpt 4061  dom cdm 4623  cfv 5212  (class class class)co 5869  cc 7800   + caddc 7805  cz 9242  cuz 9517  seqcseq 10431  cli 11270  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  sumsplitdc  11424
  Copyright terms: Public domain W3C validator