![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosval | GIF version |
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
cosval | ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7537 | . . . . . . 7 ⊢ i ∈ ℂ | |
2 | 1 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → i ∈ ℂ) |
3 | id 19 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 3 | mulcld 7605 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
5 | efcl 11103 | . . . . 5 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) |
7 | negicn 7780 | . . . . . . 7 ⊢ -i ∈ ℂ | |
8 | 7 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → -i ∈ ℂ) |
9 | 8, 3 | mulcld 7605 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
10 | efcl 11103 | . . . . 5 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) |
12 | 6, 11 | addcld 7604 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) |
13 | 12 | halfcld 8758 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ ℂ) |
14 | oveq2 5698 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
15 | 14 | fveq2d 5344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴))) |
16 | oveq2 5698 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴)) | |
17 | 16 | fveq2d 5344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴))) |
18 | 15, 17 | oveq12d 5708 | . . . 4 ⊢ (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
19 | 18 | oveq1d 5705 | . . 3 ⊢ (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
20 | df-cos 11090 | . . 3 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
21 | 19, 20 | fvmptg 5415 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ ℂ) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
22 | 13, 21 | mpdan 413 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 ici 7449 + caddc 7450 · cmul 7452 -cneg 7751 / cdiv 8236 2c2 8571 expce 11081 cosccos 11084 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 ax-caucvg 7562 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-isom 5058 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-frec 6194 df-1o 6219 df-oadd 6223 df-er 6332 df-en 6538 df-dom 6539 df-fin 6540 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-n0 8772 df-z 8849 df-uz 9119 df-q 9204 df-rp 9234 df-ico 9460 df-fz 9574 df-fzo 9703 df-seqfrec 10001 df-exp 10070 df-fac 10249 df-ihash 10299 df-cj 10391 df-re 10392 df-im 10393 df-rsqrt 10546 df-abs 10547 df-clim 10822 df-sumdc 10897 df-ef 11087 df-cos 11090 |
This theorem is referenced by: tanval2ap 11153 tanval3ap 11154 recosval 11156 cosneg 11167 efival 11172 cosadd 11177 |
Copyright terms: Public domain | W3C validator |