ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosval GIF version

Theorem cosval 11746
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
cosval (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))

Proof of Theorem cosval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-icn 7937 . . . . . . 7 i ∈ ℂ
21a1i 9 . . . . . 6 (𝐴 ∈ ℂ → i ∈ ℂ)
3 id 19 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 3mulcld 8009 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
5 efcl 11707 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 8189 . . . . . . 7 -i ∈ ℂ
87a1i 9 . . . . . 6 (𝐴 ∈ ℂ → -i ∈ ℂ)
98, 3mulcld 8009 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
10 efcl 11707 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 14 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11addcld 8008 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
1312halfcld 9194 . 2 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ ℂ)
14 oveq2 5905 . . . . . 6 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
1514fveq2d 5538 . . . . 5 (𝑥 = 𝐴 → (exp‘(i · 𝑥)) = (exp‘(i · 𝐴)))
16 oveq2 5905 . . . . . 6 (𝑥 = 𝐴 → (-i · 𝑥) = (-i · 𝐴))
1716fveq2d 5538 . . . . 5 (𝑥 = 𝐴 → (exp‘(-i · 𝑥)) = (exp‘(-i · 𝐴)))
1815, 17oveq12d 5915 . . . 4 (𝑥 = 𝐴 → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))
1918oveq1d 5912 . . 3 (𝑥 = 𝐴 → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
20 df-cos 11694 . . 3 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
2119, 20fvmptg 5613 . 2 ((𝐴 ∈ ℂ ∧ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) ∈ ℂ) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2213, 21mpdan 421 1 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  cfv 5235  (class class class)co 5897  cc 7840  ici 7844   + caddc 7845   · cmul 7847  -cneg 8160   / cdiv 8660  2c2 9001  expce 11685  cosccos 11688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-cos 11694
This theorem is referenced by:  tanval2ap  11756  tanval3ap  11757  recosval  11759  cosneg  11770  efival  11775  cosadd  11780  cosper  14708
  Copyright terms: Public domain W3C validator