![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metcn | GIF version |
Description: Two ways to say a mapping from metric πΆ to metric π· is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" π¦ there is a positive "delta" π§ such that a distance less than delta in πΆ maps to a distance less than epsilon in π·. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
metcn.2 | β’ π½ = (MetOpenβπΆ) |
metcn.4 | β’ πΎ = (MetOpenβπ·) |
Ref | Expression |
---|---|
metcn | β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcn.2 | . . . 4 β’ π½ = (MetOpenβπΆ) | |
2 | 1 | mopntopon 14028 | . . 3 β’ (πΆ β (βMetβπ) β π½ β (TopOnβπ)) |
3 | metcn.4 | . . . 4 β’ πΎ = (MetOpenβπ·) | |
4 | 3 | mopntopon 14028 | . . 3 β’ (π· β (βMetβπ) β πΎ β (TopOnβπ)) |
5 | cncnp 13815 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)))) | |
6 | 2, 4, 5 | syl2an 289 | . 2 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)))) |
7 | 1, 3 | metcnp 14097 | . . . . . . 7 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
8 | 7 | 3expa 1203 | . . . . . 6 β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
9 | 8 | adantlr 477 | . . . . 5 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
10 | simplr 528 | . . . . . 6 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β πΉ:πβΆπ) | |
11 | 10 | biantrurd 305 | . . . . 5 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β (βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
12 | 9, 11 | bitr4d 191 | . . . 4 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦))) |
13 | 12 | ralbidva 2473 | . . 3 β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β (βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯) β βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦))) |
14 | 13 | pm5.32da 452 | . 2 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ((πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
15 | 6, 14 | bitrd 188 | 1 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 βwrex 2456 class class class wbr 4005 βΆwf 5214 βcfv 5218 (class class class)co 5877 < clt 7994 β+crp 9655 βMetcxmet 13525 MetOpencmopn 13530 TopOnctopon 13595 Cn ccn 13770 CnP ccnp 13771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-map 6652 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-topgen 12714 df-psmet 13532 df-xmet 13533 df-bl 13535 df-mopn 13536 df-top 13583 df-topon 13596 df-bases 13628 df-cn 13773 df-cnp 13774 |
This theorem is referenced by: divcnap 14140 cncfmet 14164 |
Copyright terms: Public domain | W3C validator |