![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znn0sub | GIF version |
Description: The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 8712.) (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
znn0sub | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 8650 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | zre 8650 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
3 | subge0 7856 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) | |
4 | 1, 2, 3 | syl2an 283 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) |
5 | zsubcl 8687 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) | |
6 | 5 | biantrurd 299 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ≤ (𝑁 − 𝑀) ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑀)))) |
7 | 4, 6 | bitr3d 188 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑀)))) |
8 | 7 | ancoms 264 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑀)))) |
9 | elnn0z 8659 | . 2 ⊢ ((𝑁 − 𝑀) ∈ ℕ0 ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑀))) | |
10 | 8, 9 | syl6bbr 196 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 class class class wbr 3811 (class class class)co 5591 ℝcr 7252 0cc0 7253 ≤ cle 7426 − cmin 7556 ℕ0cn0 8565 ℤcz 8646 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-addcom 7348 ax-addass 7350 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-0id 7356 ax-rnegex 7357 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-ltadd 7364 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-br 3812 df-opab 3866 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-iota 4934 df-fun 4971 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-inn 8317 df-n0 8566 df-z 8647 |
This theorem is referenced by: nn0sub 8712 peano5uzti 8750 uznn0sub 8945 elfzmlbp 9434 |
Copyright terms: Public domain | W3C validator |