![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znnsub | GIF version |
Description: The positive difference of unequal integers is a positive integer. (Generalization of nnsub 8971.) (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
znnsub | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9270 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | zre 9270 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
3 | posdif 8425 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ 0 < (𝑁 − 𝑀))) | |
4 | 1, 2, 3 | syl2an 289 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁 − 𝑀))) |
5 | zsubcl 9307 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) | |
6 | 5 | ancoms 268 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) |
7 | 6 | biantrurd 305 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁 − 𝑀) ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 < (𝑁 − 𝑀)))) |
8 | 4, 7 | bitrd 188 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 < (𝑁 − 𝑀)))) |
9 | elnnz 9276 | . 2 ⊢ ((𝑁 − 𝑀) ∈ ℕ ↔ ((𝑁 − 𝑀) ∈ ℤ ∧ 0 < (𝑁 − 𝑀))) | |
10 | 8, 9 | bitr4di 198 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℝcr 7823 0cc0 7824 < clt 8005 − cmin 8141 ℕcn 8932 ℤcz 9266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 |
This theorem is referenced by: zltp1le 9320 uz2m1nn 9618 fzonnsub 10182 elfzodifsumelfzo 10214 ubmelm1fzo 10239 exbtwnzlemex 10263 rebtwn2z 10268 modfzo0difsn 10408 ltexp2a 10585 bcp1nk 10755 pc2dvds 12342 dvdsprmpweqle 12349 |
Copyright terms: Public domain | W3C validator |