ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodfzo GIF version

Theorem zmodfzo 10421
Description: An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
zmodfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵))

Proof of Theorem zmodfzo
StepHypRef Expression
1 zmodfz 10420 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1)))
2 nnz 9339 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
3 fzoval 10217 . . . 4 (𝐵 ∈ ℤ → (0..^𝐵) = (0...(𝐵 − 1)))
42, 3syl 14 . . 3 (𝐵 ∈ ℕ → (0..^𝐵) = (0...(𝐵 − 1)))
54adantl 277 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (0..^𝐵) = (0...(𝐵 − 1)))
61, 5eleqtrrd 2273 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  (class class class)co 5919  0cc0 7874  1c1 7875  cmin 8192  cn 8984  cz 9320  ...cfz 10077  ..^cfzo 10211   mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397
This theorem is referenced by:  zmodfzp1  10422  crth  12365  phimullem  12366  eulerthlem1  12368  eulerthlemh  12372  eulerthlemth  12373  modprm0  12395  modprmn0modprm0  12397  4sqlemafi  12536  znf1o  14150
  Copyright terms: Public domain W3C validator