Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzofzp1b | GIF version |
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
fzofzp1b | ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofzp1 10104 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | |
2 | simpl 108 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (ℤ≥‘𝐴)) | |
3 | eluzelz 9427 | . . . . . 6 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ ℤ) | |
4 | elfzuz3 9903 | . . . . . 6 ⊢ ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ (ℤ≥‘(𝐶 + 1))) | |
5 | eluzp1m1 9441 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐶 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐶)) | |
6 | 3, 4, 5 | syl2an 287 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐵 − 1) ∈ (ℤ≥‘𝐶)) |
7 | elfzuzb 9900 | . . . . 5 ⊢ (𝐶 ∈ (𝐴...(𝐵 − 1)) ↔ (𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐶))) | |
8 | 2, 6, 7 | sylanbrc 414 | . . . 4 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴...(𝐵 − 1))) |
9 | elfzel2 9904 | . . . . . 6 ⊢ ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ ℤ) | |
10 | 9 | adantl 275 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐵 ∈ ℤ) |
11 | fzoval 10025 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
13 | 8, 12 | eleqtrrd 2234 | . . 3 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴..^𝐵)) |
14 | 13 | ex 114 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐶 ∈ (𝐴..^𝐵))) |
15 | 1, 14 | impbid2 142 | 1 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 ‘cfv 5163 (class class class)co 5814 1c1 7712 + caddc 7714 − cmin 8025 ℤcz 9146 ℤ≥cuz 9418 ...cfz 9890 ..^cfzo 10019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 df-fzo 10020 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |